Neuer Antrieb spart Platz und Gewicht im Elektroauto
Bisher sind der Motor und der Inverter, der den Gleichstrom der Batterie in Wechselstrom für den Elektromotor wandelt, zwei getrennte Komponenten. Die neue integrierte Antriebseinheit schafft Platz, spart Gewicht und reduziert Kosten.
Kern der Lösung ist ein gemeinsames Kühlkonzept der beiden Komponenten, das sicherstellt, dass die Leistungselektronik des Inverters trotz ihrer Nähe zum Elektromotor nicht zu warm wird und so verhindert, dass weder Leistung noch Lebensdauer verringert werden.
Die Reichweite ist ein entscheidendes Kriterium bei der Anschaffung eines Elektroautos, weshalb der Automobilhersteller stets um die Optimiertung des Fahrzeuggewichts bemüht ist. Hier lag auch der Ansatzpunkt für die Siemens-Ingenieure.
Wenn der Inverter im Motor integriert wird, so die Überlegung, braucht man nur mehr ein Gehäuse und spart Gewicht. An anderer Stelle wird dagegen Bauraum mit einem Volumen von sechs bis sieben Litern frei, der zum Beispiel für ein Ladegerät genutzt werden kann. Die Kosten für die Verkabelung von Motor und Inverter fallen weg und es gibt bei der Produktion des Fahrzeugs weniger Montageschritte.
Wärmeentwicklung im Griff
Siemens entwickelte die integrierte Antriebseinheit Sivetec MSA 3300 auf Basis eines Serienelektromotors und passte das Gehäuse so an, dass der Inverter in den Motor integriert werden konnte. Ein Knackpunkt war die Wärmeentwicklung des Elektromotors. Bei hohen Temperaturen der IGBT-Module, das sind die Leistungshalbleiter, die den Batteriestrom in Wechselstrom wandeln, müssen diese in ihrer Leistung begrenzt werden. Inverter im Elektroauto sind deshalb ohnehin mit einer eigenen Wasserkühlung versehen.
Ein weiterer Baustein zur Gesamtlösung sind sehr robuste Powermodule mit SkiN-Technologie. Dahinter steckt eine Verbindungstechnik, die den Halbleiterchip flächig, also ohne Bond-Draht, kontaktiert. Der elektrische Kontakt zwischen Chip und Bond-Draht ist bei wechselnder Wärmebelastung ein Schwachpunkt von Halbleiterbauelementen.
Wesentlich für den integrierten Antrieb war eine spezielle Kühlwasserführung um Motor und Inverter. Das kühlste Wasser umströmt zunächst thermisch kritische Bauteile wie die IGBT-Module und den Zwischenkreiskondensator und wird dann in den Kühlmantel des Motors geleitet. Die Wasserführung ist so ausgelegt, dass zwischen der Inverterelektronik und dem Motor eine Art Wasserschirm entsteht, der beide Einheiten thermisch voneinander entkoppelt.
Die Funktionsfähigkeit des Konzepts wurde bereits im Labor unter den typischen Lastverläufen und Betriebsbedingungen eines Elektromotors im Auto nachgewiesen. Der Sivetec MSA 3300 stößt auf großes Interesse der Automobilbranche und wurde aktuell für den bayerischen Staatspreis für Elektro- und Hybrid-Mobilität eCarTec Award 2014 nominiert. (2014.10.4)
Media Contact
Weitere Informationen:
http://www.siemens.com/innovationnewsAlle Nachrichten aus der Kategorie: Automotive
Die wissenschaftliche Automobilforschung untersucht Bereiche des Automobilbaues inklusive Kfz-Teile und -Zubehör als auch die Umweltrelevanz und Sicherheit der Produkte und Produktionsanlagen sowie Produktionsprozesse.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automobil-Brennstoffzellen, Hybridtechnik, energiesparende Automobile, Russpartikelfilter, Motortechnik, Bremstechnik, Fahrsicherheit und Assistenzsysteme.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…