Verbesserte Feldemission durch Nanodiamanten

Ein weiterer Schritt in Richtung „organischer Elektronik”: Ein Team aus Wissenschaftlern der Justus-Liebig-Universität Gießen (JLU) und der Stanford University konnte in Feldemissionsmessungen zeigen, dass dünne Lagen nanometer-großer diamantartiger Moleküle das Austreten von Elektronen aus Metallen deutlich erleichtern.

Die Ergebnisse der Studien wurden jetzt im Magazin „Nature Nanotechnology“ veröffentlicht. Die Entdeckung eröffnet zahlreiche Anwendungsmöglichkeiten im Bereich der hochaufgelösten Elektronenmikroskopie, Elektronenstrahllithographie, Festkörperleuchtmittel und, vor allem, in der Energieumwandlung.

Seit langem versuchen Forscher, bessere Elektronenemitter für analytische Anwendungen und Displays zu entwickeln, doch hing diese sogenannte „Feldemission” immer sehr stark von der Struktur und Geometrie des Emitters ab. Vermindert wird diese Abhängigkeit durch die Beschichtung mit reaktiven Metallen wie Cäsium und Barium, die sich allerdings in Anwendungen verbieten.

Da seit langem bekannt war, dass Diamant als organisch-chemisches Molekül selbst ein guter Feldemitter ist, lag es nahe, gängige Metalle, die für die Feldemission verwendet werden, mit Diamantschichten zu versehen. Dieses Vorhaben ist technisch in großer Reinheit und Gleichmäßigkeit aber kaum zu realisieren.

Dass Forscherteam aus Gießen und Stanford wich deshalb auf nanometer-große und damit chemisch leicht veränderbare und gut zu verarbeitende Diamanten – so genannte Nanodiamanten – aus und brachte sie als sehr homogene Schicht auf Metallen auf. Dabei gelang es, verschiedene Metalle mit solchen funktionalisierten Nanodiamanten zu beschichten und damit die Feldemission der Elektronen um den bisher größten je gemessenen Wert zu verbessern.

Publikation
Karthik Thimmavajjula Narasimha, Chenhao Ge, Jason D. Fabbri, William Clay, Boryslav A. Tkachenko, Andrey A. Fokin, Peter R. Schreiner, Jeremy E. Dahl, Robert M. K. Carlson, Z. X. Shen, Nicholas A. Melosh: „Ultralow effective work function surfaces using diamondoid monolayers.“, Nature Nanotechnology, 7 December 2015
DOI: 10.1038/nnano.2015.277

Kontakt:
Prof. Dr. Peter R. Schreiner
Institut für Organische Chemie der JLU Gießen
Heinrich-Buff-Ring 17, 35392 Gießen
Telefon: 0641 99-34300
E-Mail: prs@uni-giessen.de

http://dx.doi.org/10.1038/nnano.2015.277 (Publikation)
http://www.uni-giessen.de/cms/fbz/fb08/Inst/organische-chemie/agschreiner/resear…
http://www.uni-giessen.de/cms/fbz/fb08/Inst/organische-chemie/agschreiner
http://www.nature.com

Media Contact

Lisa Dittrich idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-giessen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer