Scheinbar paradoxe Bindung organischer Halbleiter

Probenträger mit Silberkristall Quelle: Forschungszentrum Jülich

Der organische Halbleiter PTCDA bewegt sich von einer Metalloberfläche weg, wenn man ihn mit einem anderen Halbleitermaterial – nämlich Kupferphthalocyanin (CuPc) – mischt. Zugleich verstärkt sich jedoch die chemische Bindung an die Oberfläche.

Diese scheinbar paradoxe Situation lässt sich dadurch erklären, dass das stärkere Molekül in der Verbindung Elektronen vom schwächeren Molekül absaugt. Die neuen Erkenntnisse fließen unter anderem in die Entwicklung organischer Leuchtdioden und Solarzellen ein, an denen weltweit intensiv geforscht wird.

Wissenschaftler des Forschungszentrums Jülich nahmen einzelne Lagen von organischen Molekülen unter die Lupe und ermittelten, wie sich deren Abstand zur Oberfläche mit zu- und abnehmender Bindungsstärke verändert. Dazu brachten sie die beiden organischen Moleküle PTCDA und CuPc auf einer extrem glatten Silberoberfläche auf.

In gemeinsamen Experimenten mit einer Arbeitsgruppe der Universität Graz am Berliner Elektronenspeicherring BESSY sowie in weiteren Messungen in den Jülicher Labors und an der Europäischen Synchrotronstrahlungsquelle ESRF zeigte sich das überraschende Ergebnis: Die flachen PTCDA-Moleküle heben sich umso mehr von der Oberfläche ab, je stärker sie an die silberne Oberfläche binden, während die CuPc-Moleküle sich genau umgekehrt verhalten.

„Ursache für das ungewöhnliche Verhalten ist ein Ladungstransfer vom CuPc über die Silberoberfläche zum PTCDA“, erläutert Prof. Christian Kumpf, Gruppenleiter am Jülicher Peter Grünberg Institut (PGI-3). „Wenn die Moleküle alleine auf der Oberfläche liegen, ziehen sie Elektronen aus dem Metall, ganz ähnlich wie ein Staubsauger. Bringt man die Moleküle zusammen, gewinnt dabei das stärkere, nämlich PTCDA.“

Physiker der Karl-Franzens-Universität Graz haben den Vorgang im Modell durchgerechnet. „Das PTCDA saugt Elektronen vom CuPc ab und füllt damit die eigenen Orbitale. Über diese ‚Elektronenwolken‘, die sich teilweise am äußeren Rand des Moleküls befinden, bindet das PTCDA an das Metall“, erläutert Ass. Prof. Peter Puschnig, Leiter der Grazer Arbeitsgruppe. Der Vergleich mit den experimentellen Daten bewies: Die zusätzlich hinzukommenden Elektronen verstärken die Bindung des PTCDA, benötigen aber auch mehr Platz, sodass sich die Moleküle gleichzeitig von der Oberfläche entfernen.

Die untersuchte Materialkombination ist für die Grundlagenforschung an organischen Halbleitern von Bedeutung. Im Vergleich zur konventionellen Silizium-Technologie eröffnen diese Materialien völlig neue Möglichkeiten: biegsame Bauelemente etwa oder extrem günstige Einweg-Chips, die sich einfach auf eine Kunststoffschicht aufdrucken lassen.

Für ihre Verwendung ist unter anderem die Frage wesentlich, wie sich organische Moleküle mit Metallen kontaktieren lassen, sodass ein Stromfluss zustande kommt. Dies gelingt umso besser, je stärker die chemische Bindung an der Organik-Metall Grenzfläche ausfällt, da dies eine stärkere Überlagerung der äußeren Elektronenorbitale mit sich bringt.

„Dass es funktioniert, belegen organische Leuchtdioden. Sogenannte OLEDs werden bereits heute vielfach in den Anzeigen von Smartphones und Fernsehern eingesetzt“, berichtet Christian Kumpf. Sie eignen sich, wie ihr Gegenstück, die organische Solarzelle, ideal für großflächige Bauteile und könnten es eines Tages ermöglichen – so die Zukunftsvision – Fenster, Wände und Decken mit sehr wenig Strom gleichmäßig auszuleuchten. „Damit diese Vision Wirklichkeit wird, müssen wir aber die grundlegenden physikalischen und chemischen Prozesse noch besser verstehen lernen“, so der Jülicher Physiker.

Originalpublikation:
Unexpected interplay of bonding height and energy-level alignment at heteromolecular hybrid interfaces
B. Stadtmüller, D. Lüftner, M. Willenbockel, E. M. Reinisch, T. Sueyoshi, G. Koller, S. Soubatch, M. G. Ramsey, P. Puschnig, F. S. Tautz & C. Kumpf
Nature Communications (published online 16 April 2014), doi 10.1038/ncomms4685

Weitere Informationen:
Peter Grünberg Institut (PGI), Functional Nanostructures at Surfaces (PGI-3): http://www.fz-juelich.de/pgi/pgi-3/
Jülicher Arbeitsgruppe “Structure Determination of Interfaces and Nanoscale Systems“ von Prof. Christian Kumpf: http://www.fz-juelich.de/pgi/pgi-3/EN/UeberUns/Organisation/Gruppe1/gruppe1_node…

Ansprechpartner:
Prof. Dr. Christian Kumpf, Peter Grünberg Institut (PGI), Functional Nanostructures at Surfaces (PGI-3)
Tel. 02461 61-1452
c.kumpf@fz-juelich.de

Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
t.schloesser@fz-juelich.de

http://www.fz-juelich.de/portal/DE/Presse/Pressemitteilungen/PM_node.html

Media Contact

Annette Stettien idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer