Riesen am Schalenabschluss?
Vor mehr als 50 Jahren wurde das Schalenmodell der Atomkerne von Maria Göppert-Meyer und Hans Jensen entwickelt und war seitdem ausgesprochen erfolgreich. Ähnlich wie die Edelgase, die eine abgeschlossene gefüllte Elektronenschale besitzen und deshalb chemisch inert sind, gibt es auch bei Atomkernen Schalenabschlüsse, die sich durch eine besondere Stabilität ausweisen.
Diese Schalenabschlüsse treten bei den sogenannten „magischen“ Zahlen für die Anzahl der Protonen und Neutronen im Kern auf. Aus der Untersuchung stabiler Kerne ergaben sich diese zu 2, 8, 20, 28, 50, 82 und 126. Wenn sowohl die Protonenzahl als auch die Neutronenzahl magisch sind, spricht man von doppelt magischen Kernen.
Die Calciumisotope sind insoweit einmalig, als sich darunter zwei stabile doppelt magische Kerne befinden – das häufigste Isotop Ca-40 und das viel seltenere Isotop Ca-48. Jüngere Resultate von unterschiedlichen kernphysikalischen Experimenten, u.a. Massenmessungen, an den kurzlebigen Isotopen bis Ca-54 legten den Schluss nahe, dass bei Calcium auch die Neutronenzahlen 32 und 34 magisch sein könnten.
Dies steht im Einklang mit theoretischen Rechnungen, die die zugehörigen Bindungs- und Anregungsenergien mit guter Genauigkeit vorhersagen bzw. reproduzieren konnten. Calcium wäre damit das erste Element, bei dem man vier doppelt magische Kerne kennen würde. Ein weiteres Indiz für einen Schalenabschluss könnten die Kernladungsradien der Isotope liefern, welche die Größe der Ladungsverteilung, die von den positiv geladenen Protonen herrührt, widerspiegeln.
Diese Größe kann mittels Laserspektroskopie bestimmt werden, denn die Elektronen der Hülle besitzen eine sehr kleine aber endliche Wahrscheinlichkeit, sich im Atomkern zu tummeln. Während dieser Zeit „ertasten“ sie die Protonenverteilung. Ihre Bindungsenergie verändert sich geringfügig, wenn sich die Ladungsverteilung aufgrund der sich ändernden Zahl von Neutronen vergrößert oder verkleinert. Da die Effekte winzig sind, muss eine sehr genaue Methode verwendet werden, die in der Lage ist diese Variationen zu messen.
Die kollineare Laserspektroskopie bietet diese Genauigkeit und wurde bereits früher für die Spektroskopie der leichteren Calciumisotope eingesetzt. Bei dieser Technik wird der Ionenstrahl des zu untersuchenden Isotops mit einem Laserstrahl überlagert. Wenn die Wellenlänge und damit die Farbe des Lasers nicht exakt an die Bindungsenergien der Elektronen im entsprechenden Isotop angepasst ist, kann das Laserlicht nicht mit den Ionen in Wechselwirkung treten und die Detektoren, die von der Seite auf den Ionenstrahl gerichtet sind, liefern keine Signale.
Der zu messende Effekt der Ladungsverteilung bewirkt für das Isotop Ca-52 gegenüber dem stabilen Isotop Ca-40 eine Änderung von etwa 2×10^–7 in der Wellenlänge. Dies entspricht einer Variation des Abstandes Erde-Mond um etwa 70 m. Besitzt das Laserlicht hingegen die richtige Wellenlänge, so absorbieren die Ionen das Licht. Die dabei aufgenommene Energie müssen sie innerhalb einiger Nanosekunden (1 ns ist eine milliardstel Sekunde) wieder loswerden. Dies tun sie, indem sie wiederum Licht aussenden. Dieses geschieht nun aber auch in Richtung der Detektoren und diese registrieren ein Signal.
An der Isotopenfabrik ISOLDE am CERN können die schwereren radioaktiven Calciumisotope erzeugt, gesammelt und als kurzes Ionenpaket zu verschiedenen Experimenten, unter ihnen auch das COLLAPS-Experiment zur kollinearen Laserspektroskopie, geleitet werden. Obwohl die Pakete von Ca-52 nur einige wenige Ionen beinhalten und diese wiederum die Detektoren innerhalb weniger Mikrosekunden passieren, erzeugen sie ein ausreichendes Signal, um im Experiment beobachtet zu werden und die Ladungsradien präzise zu bestimmen.
Die COLLAPS-Messungen erreichten eine Genauigkeit, die im obigen Beispiel einer Bestimmung der Variation des Abstandes Erde-Mond um 2 m entspricht. Dabei ergab sich ein starkes Anwachsen der Ladungsradien bei den Isotopen jenseits von Ca-48. Dass der Ladungsradius von Ca-48 zu Ca-50 stark ansteigt, war bereits in früheren Messungen in den neunziger Jahren festgestellt worden.
Jetzt stellte sich aber heraus, dass sich dieser rasche Anstieg praktisch ungebremst bis zu Ca-52 hin fortsetzt, und selbst bei diesem als magisch angesehenen Isotop – entgegen den Erwartungen der stärkeren Bindung – der Ladungsradius weiterhin zunimmt. Den experimentellen Messungen werden bestehende und neue, modernste Vielteilchenrechnungen gegenübergestellt.
Es zeigt sich, dass keine der Theorien die große Zunahme erklären kann und deutet darauf hin, dass eine Anpassung der Kernkräfte notwendig ist, um den unerwartet großen Ladungsradius von Ca-52 zu beschreiben. Die Calciumisotope bleiben damit in der Kernphysik ein äußerst spannendes Forschungsfeld.
Die in Nature Physics erschienenen Ergebnisse basieren auf einer Zusammenarbeit der COLLAPS Kollaboration an ISOLDE/CERN, bestehend u.a. aus Wissenschaftlerinnen und Wissenschaftlern vom Max-Planck-Institut für Kernphysik, Heidelberg, und der Technischen Universität Darmstadt, mit theoretischen Gruppen der Technischen Universität Darmstadt und in den USA.
Originalpublikation:
Unexpectedly large charge radii of neutron-rich calcium isotopes, R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, T. Papenbrock, J. Papuga, A. Schwenk, J. Simonis, K. A.Wendt and D. T. Yordanov, Nature Physics 12, online 08.02.2016, DOI: 10.1038/nphys3645 http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3645.html
Gemeinsame Meldung des Max-Planck-Instituts für Kernphysik und der Technischen Universität Darmstadt
Kontakt:
Prof. Dr. Klaus Blaum, MPI für Kernphysik
Tel.: 06221 516850
klaus.blaum@mpi-hd.mpg.de
Prof. Achim Schwenk, Institut für Kernphysik, TU Darmstadt
Tel.: 06151-16-64235
schwenk@physik.tu-darmstadt.de
Prof. Dr. Wilfried Nörtershäuser, Institut für Kernphysik, TU Darmstadt
Tel.: 06151-16-23575
wnoertershaeuser@ikp.tu-darmstadt.de
https://www.mpg.de/7326075/masse_calcium_isotop – Pingpong mit schweren Calcium-Ionen (Pressemeldung der MPG)
https://www.tu-darmstadt.de/vorbeischauen/aktuell/archiv_2/2013_1/einzelansicht_… – Was die Welt im Innersten zusammen hält – Mit Ionen-Pingpong Kräfte in Atomkernen sichtbar gemacht (Pressemeldung der TUD)
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…