3D-Druck jetzt auch mit Glas möglich

Komplizierte, hochgenaue Strukturen aus Glas lassen sich durch eine am KIT entwickelte Methode im 3D-Druck fertigen. Fotos: KIT

Glas ist einer der ältesten Werkstoffe der Menschheit. Jetzt lässt sich das schon im alten Ägypten und antiken Rom verwendete Material auch mit der Fertigungstechnik des 21. Jahrhunderts verarbeiten. Ein interdisziplinäres Team am KIT um den Maschinenbauingenieur Dr. Bastian E. Rapp hat ein Verfahren entwickelt, mit dem sich Glas für die additive Fertigungstechnik nutzen lässt.

Die Forscher mischen Nanopartikel hochreinen Quarzglases mit einer kleinen Menge flüssigen Kunststoffs und lassen diese Mischung durch Licht – mittels Stereolithografie – an bestimmten Stellen aushärten. Das flüssig gebliebene Material wird in einem Lösungsmittelbad herausgewaschen, so bleibt nur die gewünschte, ausgehärtete Struktur bestehen. Der in dieser Glasstruktur noch eingemischte Kunststoff wird anschließend durch Erhitzen entfernt.

„Die Form ähnelt zunächst einem Sandkuchen, sie ist zwar geformt, aber instabil, deshalb wird das Glas in einem letzten Schritt gesintert, also so weit erhitzt, dass die Glaspartikel miteinander verschmelzen“, erklärt Rapp. Er forscht am KIT am Institut für Mikrostrukturtechnik und leitet eine Arbeitsgruppe, der Chemiker, Elektrotechniker und Biologen angehören. Unter dem Titel „Three-Dimensional Printing of Transparent Fused Silica Glass“ stellen die Wissenschaftler das Verfahren in der Fachpublikation Nature vor.

Die verschiedenen Techniken des 3D-Drucks eigneten sich bislang zwar für die Verwendung von Kunststoffen oder Metallen, nicht jedoch für Glas. Wurde Glas bisher, zum Beispiel durch Schmelzen und Applizieren mittels einer Düse, zu Strukturen verarbeitet, wurde die Oberfläche sehr rau, das Material war porös und enthielt Hohlräume. „Wir stellen eine neue Methode vor, die eine Innovation in der Materialprozessierung bedeutet. Das Material des gefertigten Stücks ist hochreines Quarzglas mit seinen entsprechenden chemischen und physikalischen Eigenschaften“, so Rapp.

Die von den Wissenschaftlern am KIT gefertigten gläsernen Strukturen weisen Auflösungen im Bereich weniger Mikrometer auf – ein Mikrometer entspricht einem Tausendstel Millimeter. „Die Abmessung der Strukturen kann aber im Bereich mehrerer Zentimeter liegen“, betont Rapp.

Einsetzen ließe sich 3D-geformtes Glas zum Beispiel in der Datentechnik. „Die übernächste Generation von Computern wird mit Licht rechnen, das erfordert komplizierte Prozessorstrukturen, mit Hilfe der 3D-Technik könnten beispielsweise kleine, komplexe Strukturen aus einer Vielzahl kleinster, unterschiedlich ausgerichteter optischer Komponenten hergestellt werden“, erläutert der Maschinenbauingenieur.

Für die biologische und medizinische Technik ließen sich kleinste Analyse-Systeme aus Miniatur-Glasröhrchen fertigen. Zudem könnten 3D-geformte Mikrostrukturen aus Glas in unterschiedlichsten Anwendungsgebieten der Optik zum Einsatz kommen, vom Brillenglas mit besonderen Anforderungen bis zur Linse der Laptop-Kamera.

Die Entwicklung der Forscher um Nachwuchsgruppenleiter Bastian E. Rapp ist ein Ergebnis im Zuge der Nachwuchsförderung „NanoMatFutur“, mit der das Bundesministerium für Bildung und Forschung (BMBF) die Entwicklung von Werkstoffinnovationen für Industrie und Gesellschaft unterstützt.

Die Arbeit der von Rapp geleiteten Forschergruppe wird vom BMBF seit 2014 für insgesamt vier Jahre mit rund 2,8 Millionen Euro gefördert. „Unsere Forschung profitiert sehr vom interdisziplinären Miteinander verschiedener Institute am KIT, so sind neben dem Institut für Mikrostrukturtechnik unter anderem Kollegen vom Institut für Nukleare Entsorgung und vom Institut für Angewandte Materialien an dem Projekt beteiligt“, sagt Rapp.

Videos und mehr Informationen zur aktuellen Veröffentlichung sowie dem Vorgängerprojekt finden Sie unter: http://www.pkm.kit.edu/liquidglass.php

Die nun vorgestellte Technologie ist auch eines der Themen auf dem Stand des KIT auf der Hannover Messe vom 24. bis 28. April 2017 (Halle 2, B16 – „Research and Technology“). Weitere Informationen: http://www.kit.edu/kit/pi_2017_043_hannover-messe-innovative-technologien-fuer-e…

Frederik Kotz, Karl Arnold, Werner Bauer, Dieter Schild, Nico Keller, Kai Sachsenheimer, Tobias M. Nargang, Christiane Richter, Dorothea Helmer, Bastian E. Rapp: Three-Dimensional Printing of Transparent Fused Silica Glass. Nature, DOI:10.1038/nature22061

Weiterer Kontakt:
Margarete Lehné, Pressereferentin, Tel.: +49 721 608-48121, Fax: +49 721 608-43658, margarete.lehne@kit.edu

Das Karlsruher Institut für Technologie (KIT) verbindet seine drei Kernaufgaben Forschung, Lehre und Innovation zu einer Mission. Mit rund 9 300 Mitarbeiterinnen und Mitarbeitern sowie 25 000 Studierenden ist das KIT eine der großen natur- und ingenieurwissenschaftlichen Forschungs- und Lehreinrichtungen Europas.

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Diese Presseinformation ist im Internet abrufbar unter: http://www.kit.edu

http://www.pkm.kit.edu/liquidglass.php
http://www.kit.edu/kit/pi_2017_043_hannover-messe-innovative-technologien-fuer-e…

Media Contact

Monika Landgraf Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nahaufnahme einer Fruchtfliege auf einem grünen, stacheligen Blatt. Bildnachweis: Erik Karits, Pexels

Genom-Invasoren: Shellder Und Spoink Setzen Neue Akzente

Zum horizontalen Transfer von genetischem Material in Eukaryonten – also Lebewesen, deren Zellen einen Zellkern besitzen – gibt es bis dato nur sehr wenige Nachweise über kurze evolutionäre Zeiträume hinweg….

Exemplarischer Paranussbaum im Gebiet des Amazonasbeckens.

Indigene Praktiken fördern die genetische Vielfalt der Paranuss

Genomanalysen offenbaren die entscheidende Rolle menschlicher Aktivitäten für das Erbgut von Arten im Amazonas. Der signifikante Rückgang der genetischen Diversität im Amazonasbecken infolge historischer Ereignisse wie der europäischen Kolonialisierung, der…

Der Innsbrucker Quantencomputer rechnet mit Algorithmen, die zwischen zwei verschiedenen Fehlerkorrektur-Codes hin und her schalten, um fehlerkorrigierte Rechenoperationen zu realisieren.

Fehlerfreies Quantencomputing mit zwei Codes erreichen

Quantencomputer korrigiert Fehler mit zwei verschiedenen Korrektur-Codes Auch Computer machen Fehler. Diese werden mittels technischer Vorkehrungen unterdrückt oder während einer Rechnung erkannt und behoben. Bei Quantencomputern ist dies mit einigem…