Größenkontrolle von Blockcopolymerschablonen mittels elektrischer Felder

Um Festplatten der nächsten Generation zu bauen, werden verstärkt sog. Blockcopolymere, d.h. Zweikomponentenkunststoffe aus Polystyrol und Poly(methyl methacrylat) von führenden Firmen eingesetzt.

Diese Bausteine bilden eine regelmäßige Struktur aus nanometergroßen Elementen (z.B. Zylindern) mit einem Abstand von ca. 30 Nanometern, d.h. 10.000-mal kleiner als der Durchmesser eines menschlichen Haares, in einer Kunststoffmatrix aus.

Um die Größenordnung und die Abstände der Zylinder voneinander zu steuern, war bisher die Synthese eines neuen Kunstoffes mit veränderten Eigenschaften notwendig. Wie kürzlich in der Zeitschrift Nature Materials berichtet (Online-Ausgabe vom 25. November 2007) [1], ist an der Universität Bayreuth in der Gruppe von Prof. Dr. Alexander Böker am Lehrstuhl für Physikalische Chemie II, ein Effekt entdeckt worden, der es erlaubt, die Abstände zwischen den Strukturelementen mit Hilfe eines elektrischen Feldes nanometergenau zu steuern.

Mit Hilfe von Röntgenstrahlung wurden die Struktureinheiten des Blockcopolymers „abgebildet“ und man stellte fest, daß elektrische Felder von bis zu 12 kV/mm in der Lage sind, die beteiligten Polymermoleküle derart durch Streckung zu verformen, dass die charakteristischen Abstände der Struktur in einem Bereich von bis zu 10% reversibel und innerhalb von wenigen Millisekunden eingestellt werden können. Somit wären zukünftigt keine aufwendigen neuen Synthesen zur Steuerung der Strukturgröße notwendig. Die Beobachtungen konnten über die Polarität der Polymerketten erklärt und die relevanten Parameter zur Steuerung des Effektes identifiziert werden.

Literaturninweis
[1] K. Schmidt, H. G. Schoberth, M. Ruppel, H. Zettl, H. Hänsel, T.M. Weiss, V. Urban, G. Krausch, A. Böker
„Reversible Tuning of a Block Copolymer Nanostructure via Electric Fields“
Nature Materials 2007, doi:10.1038/nmat2068.
Weiter Informationen bei:
Prof. Dr. Alexander Böker
Physikalische Chemie II
Universität Bayreuth
Telefon: 0921-552335
Email: alexander.boeker@uni-bayreuth.de

Media Contact

Kerstin Wodal Universität Bayreuth

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

3D-Tumormodell für Retinoblastomforschung mit Fokus auf Tumor-Umgebungs-Interaktionen.

Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut

Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…

Private Brunnen als Notwasserversorgung zur Stärkung der Katastrophenresilienz.

Eine gut erledigte Aufgabe: Wie Hiroshimas Grundwasserstrategie bei der Bewältigung von Überschwemmungen half

Grundwasser und multilaterale Zusammenarbeit in den Wiederaufbaubemühungen milderten die Wasserkrise nach der Überschwemmung. Katastrophen in Chancen umwandeln Die Gesellschaft ist oft anfällig für Katastrophen, aber wie Menschen während und nach…

DNA Origami-Strukturen steuern biologische Membranen für gezielte Medikamentenabgabe

Die Zukunft gestalten: DNA-Nanoroboter, die synthetische Zellen modifizieren können

Wissenschaftler der Universität Stuttgart haben es geschafft, die Struktur und Funktion biologischer Membranen mithilfe von „DNA-Origami“ zu kontrollieren. Das von ihnen entwickelte System könnte den Transport großer therapeutischer Lasten in…