Entscheidende Billiardstelsekunden

In welcher Zeit sich Elektronen in Materialien verschieben, beeinflusst wesentlich die Effizienz vieler biologischer und technischer Systeme. Erstmals hat eine Forschungsgruppe am Beispiel neuartiger Solarzellen nachgewiesen, dass ein Elektronentransfer bloß drei Billiardstelsekunden dauert. Über die ungewöhnliche Messung berichtet das britische Wissenschaftsmagazin Nature in seiner jüngsten Ausgabe.

Zahlreiche Phänomene in der Wissenschaft spielen sich in extrem kurzer Zeit ab, so auch der Transfer von Elektronen zwischen verschiedenen Atomen und Molekülen. Die bisher eingesetzte Lasertechnik vermag nur Zeitabschnitte zu messen, die mindestens 20 Femtosekunden (Billiardstelsekunden) betragen. In Wirklichkeit verschieben sich die Elektronen aber schneller.

Einem internationalen Forschungsteam – darunter dem PSI-Physiker Luc Patthey – ist es gelungen, eine neue Messmethode anzuwenden, die den Elektronentransfer viel genauer erfasst. Dazu nutzten die Wissenschafter Synchrotronlicht, eine elektromagnetische Strahlung im Röntgenbereich. Untersucht wurde dabei eine Nano-Solarzelle, bekannt auch unter dem Namen „Grätzel-Zelle“.

Nano-Solarzellen sind anders gebaut als herkömmliche Photovoltaik-Anlagen. Wichtigstes Grundmaterial ist nicht Silizium, sondern ein speziell strukturierter Halbleiter – wie zum Beispiel Titandioxid, das man auch manchen Kosmetika als Farbstoff beimischt. Die Paste wird auf eine Glasplatte aufgebracht, zu einem festen Film verbacken und besteht dann aus winzigen Partikeln, alle zwischen 10 und 30 Millionstelmillimeter klein. Mit dieser Nanostruktur ist die Oberfläche tausendmal grösser als bei einem glatten Film – ein bestechender Vorteil beim Einfangen von Sonnenlicht.

Präzise angeregte Elektronen setzen zum Sprung an
Damit die Nano-Solarzelle funktioniert, muss das Titandioxid in einen Farbstoff getaucht werden. Das einfallende Sonnenlicht regt in den Farbstoff-Molekülen Elektronen so an, dass sie in den Halbleiter darunter fliessen und danach eine elektrische Spannung erzeugen. Um die Ausbeute der Solarenergie möglichst hochzuhalten, sollte einerseits der Farbstoff gut geeignet sein und anderseits der Elektronentransfer möglichst rasch erfolgen. Die Dauer des Elektronentransfers haben die Forscher am Max-Lab im schwedischen Lund gemessen. Das dort eingesetzte Synchrotronlicht konnte Elektronen in den Farbstoff-Molekülen derart präzise anregen, dass sie wie auf Befehl in den nanostrukturierten Halbleiter sprangen – innerhalb von bloss drei Billiardstelsekunden.

Die Experimente sind in der neuesten Ausgabe von Nature dargestellt. Ihre Ergebnisse zeigen, dass der verwendete Farbstoff – ein organisches Molekül mit einem zentralen Ruthenium-Atom – das Sonnenlicht effizient nutzt. Verbesserungen beim Wirkungsgrad solcher Solarzellen, der zurzeit bei 10 Prozent liegt, müssen folglich anderswo ansetzen. Mit Messungen an der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts (PSI) in Villigen (Schweiz) sollen weitere Untersuchungen folgen. Die ultraschnelle Zeitmessung für den Elektronentransfer lässt sich auch für andere Anwendungen in biologischen und technischen Systemen nutzen – zum Beispiel bei der Suche nach neuen chemischen Prozessen in der Pharmaindustrie. (Quelle: Nature, Band 418, Seiten 620 – 623)

Der Text dieser Medienmitteilung sowie Bilder (in hoher Auflösung) von der Synchrotron Lichtquelle Schweiz (SLS) lassen sich vom Internet herunterladen.

Weitere Auskünfte:
Dr. Luc Patthey
Paul Scherrer Institut
Tel. 056 310 45 62, E-Mail luc.patthey@psi.ch

Media Contact

Beat Gerber idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…