Roboter lernt fundamentale mathematische und physikalische Konzepte durch Experimentieren und Beobachten
Der Roboter bewegt sich zunächst ziellos durch die Umgebung und zeichnet dabei seine Sensordaten auf, ohne sich der darin enthaltenen Informationen bewusst zu sein. Der Algorithmus nimmt diese Sensordaten und erzeugt daraus ein Modell, das dem Roboter erlaubt vorherzusagen, wie die Objekte in seiner Nachbarschaft ihre Position verändern werden in Folge seiner eigenen Bewegung.
„Was für einen Menschen eine triviale Angelegenheit ist, ist für einen Roboter ein ziemlich schwieriges Problem“, erläutern Jure Zabkar und Ivan Bratko von der Universität Ljubljana, die Erfinder des Algorithmus. „Unser Roboter hat weniger Wissen als ein Baby. Ein Objekt zu sehen, ist für ihn bedeutungslos.
Er nimmt nur Farbkleckse und Kanten wahr. Er kennt weder das Konzept eines Objektes, noch das einer Position eines Objekts in einem Koordinatensystem, noch weiß er, wie sich diese verändert, wenn er sich selbst bewegt. Dem Roboter wird weder gesagt, er soll ein Koordinatensystem lernen, noch wie es zu lernen ist, noch wozu es gut ist. Wir haben einen Mechanismus entwickelt, der dem Roboter erlaubt Regelmäßigkeiten aus den Sensordaten zu extrahieren und diese in ein Modell bzw. in eine Theorie zu übersetzen, die es dem Roboter ermöglichen, besser zu erklären und vorherzusagen, was in seiner Umgebung vor sich geht. Das Erlernen eines Koordinatensystems ist nur eine Demonstration dieser Fähigkeit. Mit demselben Algorithmus haben wir physikalische Konzepte wie „Beweglichkeit“ eines Objekts oder „Freiheitsgrad einer Bewegung“ (Anzahl der Achsen entlang derer oder um die herum sich ein Objekt bewegen kann) gelernt.“
Was sich zunächst eher wie ein akademisches Grundlagenproblem ausnimmt, hat auch eine enorme technische Relevanz, erklärt der Koordinator des Projekts Erwin Prassler von der Hochschule Bonn-Rhein-Sieg in Sankt Augustin, Deutschland. Das XPERO Projekt legt die ersten Grundsteine für eine Technologie, die das Potential hat, eine Schlüsseltechnologie für die nächste Generation von Servicerobotern zu werden, die unsere Häuser sauber halten, unseren Rasen mähen, oder unsere Schuhe putzen. Bereits existierende Produkte sind intelligenzlose, vorprogrammierte Geräte. Sie können lediglich eine einzige vorprogrammierte Aufgabe ausführen. Weder sind sie in der Lage, eine neue, vorher nicht bekannte Aufgaben ausführen, noch mit unvorhergesehenen Betriebsbedingungen zurecht kommen. Zukünftige Serviceroboter müssen dagegen in der Lage sein, auf der Grundlage ihres bereits vorhandenen Wissens und ihrer Sensorbeobachtungen ganz neue Konzepte und Modelle zu erlernen und mit diesem neuen Wissen neue Aufgaben zu erfüllen.
Der XPERO Roboter wird seine Lernfähigkeit während der FET'09 Konferenz (Future and Emerging Technologies) vom 21. bis 23. April in Prag demonstrieren.
Media Contact
Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung
Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.
Neueste Beiträge
Wirkstoff-Forschung: Die Struktur von Nano-Genfähren entschlüsseln
LMU-Forschende haben untersucht, wie sich kationische Polymere beim Transport von RNA-Medikamenten auf molekularer Ebene organisieren. Kationische Polymere sind ein vielversprechendes Werkzeug für den Transport von RNA-Therapeutika oder RNA-Impfstoffen und werden…
Entwicklung klimaneutraler Baustoffe
…aus biogenen Materialien unter Einsatz phototropher Mikroorganismen. Das Fraunhofer-Institut FEP in Dresden bietet skalierbare Forschungs- und Entwicklungsmöglichkeiten, um technologische Innovationen auf neue Produktionsprozesse anzuwenden. Angesichts der steigenden Nachfrage nach klimaneutralen…
Optimiertes Notfallmanagement dank App
Wie die eGENA-App bei Notfällen in der Anästhesie hilft. Mit der eGENA-App hat die Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI) ein digitales Werkzeug geschaffen, das den Klinikalltag bei…