Auch in der Natur gibt es nichts umsonst – das Dilemma der Pflanzen bei der Abwehr von Feinden
Individuen ein und derselben Pflanzenart sind unterschiedlich erfolgreich bei der Abwehr von Krankheitserregern: Während eine Rose überlebt, geht die benachbarte an dem Befall von Bakterien oder Pilzen zugrunde.
Wissenschaftler der Abteilung Molekularbiologie am Max-Planck-Institut für Entwicklungsbiologie in Tübingen sind diesen Unterschieden auf den Grund gegangen. Das Ergebnis: Krankheitsresistenz ist mit hohen Kosten verbunden. So bilden besonders resistente Pflanzen der Ackerschmalwand Arabidopsis thaliana weniger und insgesamt kleinere Blätter und sind damit in der Abwesenheit von Feinden weniger konkurrenzfähig als anfälligere Pflanzen. Ob es vorteilhafter ist in die Resistenz oder aber in Biomasse zu investieren, hängt somit von den jeweiligen Umständen ab, die jedoch nicht vorhergesagt werden können. Daher findet man in der Natur immer sowohl die großen und verwundbaren Individuen als auch die kleinen und wehrhaften (Nature, 3. Juni 2010).
Pflanzen haben im Laufe der Evolution zahlreiche Wege entwickelt, um sich gegen Feinde zu wehren. Einige produzieren übelriechende oder –schmeckende Stoffe, andere entwickeln Stacheln oder haben eine besonders effektive Immunabwehr gegen Viren und Bakterien. Bei einem genügend hohen Selektionsdruck wäre zu erwarten, dass immer nur diejenigen Individuen überleben, die sich am besten wehren können. In der Folge sollten die Erreger einen schweren Stand haben. Das ist aber nicht der Fall; tatsächlich unterscheiden sich die Abwehrkräfte einzelner Pflanzen sehr, und zwar sowohl von Art zu Art als auch innerhalb einer Art.
Eine Erklärung für diese Variation liegt in den unterschiedlichen Angriffsstrategien der Krankheitserreger und Fraßfeinde. Sie machen es der Pflanze schwer, sich gleichzeitig gegen jeden möglichen Feind zu verteidigen. Zum anderen vermutet man schon lange, dass besonders effiziente Abwehrmechanismen mit einem hohen Aufwand und dadurch mit erheblichen Kosten für die Pflanze verbunden sind. Diese Investition lohnt sich deshalb nur in Jahren oder an Standorten, in beziehungsweise an denen die Feinde tatsächlich auftreten. Wie hoch die Kosten dafür ausfallen, war bislang jedoch unklar.
Wissenschaftler in der Gruppe von Detlef Weigel am Max-Planck-Institut für Entwicklungsbiologie haben nun eine Variante des ACD6 Gens dingfest gemacht, das eine Universalwaffe im Abwehrkampf gegen Pflanzenschädlinge darstellt: Es bewirkt, dass die Pflanzen in erhöhter Konzentration Chemikalien bilden, die entweder direkt für Krankheitserreger giftig sind oder die als Signalstoffe für die Immunantwort dienen. Die Ackerschmalwand ist damit in der Lage, nicht nur Bakterien und Pilze abzuwehren, sondern auch Insekten, wie zum Beispiel Blattläuse. Jedoch besitzt längst nicht jede Sorte der Ackerschmalwand diese Genvariante: Sie ist zwar an allen Standorten zu finden, an denen die Ackerschmalwand wächst – von Nordafrika bis Skandinavien, und von Zentralasien bis Westeuropa – aber immer nur in etwa zwanzig Prozent der Individuen. Dies deutet bereits darauf hin, dass die Genvariante auch nachteilige Eigenschaften hat.
„Wir konnten zeigen, dass das Gen die Pflanzen zwar resistent gegen verschiedene Krankheitserreger macht, aber gleichzeitig das Blattwachstum stark beeinträchtigt, so dass die Pflanzen weniger Blätter bilden und insgesamt wesentlich kleiner bleiben“, sagt Detlef Weigel. Sobald Feinde auftauchen, sind die Pflanzen ihren Artgenossen gegenüber im Vorteil. An Standorten oder in den Jahren, in denen es wenige Feinde gibt, sind sie aber im Nachteil. Denn die geringere Blattmasse verringert die Samenproduktion und führt somit zu einer geringeren Anzahl an Nachkommen. Das Fazit von Weigel: „Auch in der Natur gilt: Nichts ist umsonst!“
An der Studie beteiligte Forscher und Institute:
Detlef Weigel, Marco Todesco, Sureshkumar Balasubramanian, Sridevi Sureshkumar, Christa Lanz, und Roosa Laitinen vom Max-Planck-Institut für Entwicklungsbiologie, Tübingen; Tina Hu, Yu Huang und Magnus Nordborg von der University of Southern California, Los Angeles; Brian Traw, Matt Horton, Joy Bergelson und Justin Borevitz von der University of Chicago; Petra Epple und Jeff Dangl von der University of North Carolina; Christine Kuhns und Volker Lipka von der Universität Göttingen; Chris Schwartz und Joanne Chory vom Salk Institute in La Jolla.
Originalpublikation:
M. Todesco, S. Balasubramanian, T. T. Hu, M. B. Traw, M. Horton, P. Epple, C. Kuhns, S. Sureshkumar, C. Schwartz, C. Lanz, R. A. E. Laitinen, Y. Huang, J. Chory, V. Lipka, J. O. Borevitz, J. L. Dangl, J. Bergelson, M. Nordborg, and D. Weigel: Natural allelic variation underlying a major fitness tradeoff in Arabidopsis thaliana. Nature, 2010
Weiterführende Informationen:
Detlef Weigel wurde am 21. Mai 2010 zum auswärtigen Mitglied der Royal Society of London gewählt. Die Royal Society, 1660 gegründet, ist die älteste bestehende Akademie der Wissenschaften. Ihr gehört nur ein kleiner, exklusiver Kreis deutscher Wissenschaftler an, zu dem neben mehreren Nobelpreisträgern wie Christiane Nüsslein-Volhard, sonst nur der ehemalige Präsident der Max-Planck-Gesellschaft, Hubert Markl, zählt.
Ansprechpartner:
Prof. Dr. Detlef Weigel
Tel: +49 7071 601-1410
E-Mail: Detlef.Weigel@tuebingen.mpg.de
Dr. Susanne Diederich (Presse- und Öffentlichkeitsabteilung)
Tel: +49 7071 601-333
E-Mail: presse@tuebingen.mpg.de
Das Max-Planck-Institut für Entwicklungsbiologie betreibt Grundlagenforschung auf den Gebieten der Biochemie, Molekularbiologie, Genetik sowie Zell- und Evolutionsbiologie. Es beschäftigt rund 325 Mitarbeiterinnen und Mitarbeiter und hat seinen Sitz auf dem Max-Planck-Campus in Tübingen. Das MPI für Entwicklungsbiologie ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…