Was den Menschen vom Fadenwurm unterscheidet

Signale von außen beeinflussen die Dekodierungsmechanismen der DNA – im Forschungszentrum Karlsruhe erstmals Übertragungskette aufgeklärt

Nur ein Faktor zwei trennt den Menschen vom Fadenwurm, wenn man die Anzahl der Gene betrachtet. Um die deutlich größere Komplexität zu erzielen, bedient sich die Natur eines genetischen Tricks: Gensequenzen können während ihrer Dekodierung verschieden zusammengefasst werden und damit unterschiedliche Proteine erzeugen. Wissenschaftler des Forschungszentrums Karlsruhe konnten nun erstmals zeigen, wie dieser Mechanismus im Zellkern durch Signale von außerhalb der Zelle beeinflusst werden kann. Die wissenschaftlichen Ergebnisse werden am 12. Dezember 2002 von der englischen Fachzeitschrift „Nature“ publiziert.

Eine der größten Überraschungen bei der Aufklärung des menschlichen Erbgutes war der Befund, dass es nur etwa doppelt so viele Gene enthält wie das Erbgut eines primitiven Fadenwurms. Die hohe biologische Komplexität des Menschen wird durch zelluläre Mechanismen erklärt, mit denen aus einem einzigen Gen unterschiedliche Proteine (Eiweiße) hergestellt werden können. Der bei weitem häufigste dieser Mechanismen – genannt „Alternatives Spleißen“ – beruht darauf, dass auf der DNA die Information zur Herstellung eines Proteins in kleinen Stücken (Exons) abgelegt ist, die durch lange Bereiche ohne Information (Introns) getrennt sind.

Die Übersetzung der genetischen Informationen in Proteine geschieht durch ein Botenmolekül (mRNA = Messenger-RNA). Zum Aufbau dieses Botenmoleküls werden aus einem Vorläuferbotenmolekül die Introns durch biochemische Abläufe herausgeschnitten und nur noch die Exons aneinander gehängt. Der Mechanismus heißt „Spleißen“; das Ergebnis sind fertige Kodes für Proteine, die Vorgänge in Organismen steuern.

Für die Exons gibt es nun verschiedene Kombinationsmöglichkeiten: So können Exons vorne oder hinten an das Botenmolekül angehängt, es können aber auch Exons aus der Mitte der Gensequenz ausgelassen werden. Dies wird als Alternatives Spleißen bezeichnet. Nach derzeitigen Schätzungen spielt Alternatives Spleißen bei der Herstellung von Proteinen von mehr als 50 % aller menschlichen Gene eine Rolle. Der Mechanismus ist nicht nur bei der normalen Entwicklung von Organismen entscheidend, sondern – wenn er zur falschen Zeit oder in der falschen Zelle abläuft – auch bei der Entstehung menschlicher Krankheiten wie Krebs. Die Herstellung verschiedener Spleißformen für Proteine erfordert deshalb eine zeitliche und räumliche Kontrolle durch Signalstoffe aus der Zellumgebung. Wissenschaftler des Forschungszentrums Karlsruhe konnten nun erstmals zeigen, wie solche Signalstoffe Alternatives Spleißen steuern.

„Wir haben festgestellt, dass es in der Zelle Übertragungswege gibt, die – ausgelöst durch ein Signal von außen – kontrollieren, welche Exons zu einer Sequenz für das Botenmolekül zusammengebunden werden“, erläutern Dr. Nathalie Matter und Dr. Harald König, Wissenschaftler am Institut für Toxikologie und Genetik des Forschungszentrums Karlsruhe. „Auf molekularer Ebene fanden wir, dass ein ganz zentraler Übertragungsweg durch chemische Veränderungen die Aktivität eines Eiweißes steuert, das an Exonbereiche in Botenmolekülen binden und diese auswählen kann.“

Die Hoffnung der Wissenschaftler ist nun, über solche Mechanismen neue Erkenntnisse einerseits über die Embryonalentwicklung, andererseits über die Entstehung von neurodegenerativen Erkrankungen (z. B. bestimmte Formen der Alzheimerschen Krankheit) oder von Krebs zu erhalten.

Die Ergebnisse wurden von der englischen Fachzeitschrift „Nature“, Volume 420, am 12. Dezember 2002 veröffentlicht.

Wissenschaftliche Vertiefung

Während der Reifung eines Vorläufer-Botenmoleküls (prä-mRNA) zum funktionellen Botenmolekül (mRNA) müssen die Introns aus der Sequenz herausgeschnitten und zu einer zusammenhängenden, proteinkodierenden RNA-Sequenz zusammengefügt werden. Durch Alternatives Spleißen können aus einer Gen-Sequenz unterschiedliche mRNA und damit Proteine hergestellt werden. Ziel der Arbeiten war die Erforschung der Signalrouten innerhalb der Zelle, mit der außerhalb der Zelle anliegende Signale die Herstellung verschiedener Proteine anregen.

Als Modell diente das Gen CD44. Es kodiert ein Zelloberflächen-Molekül, von dem verschiedene Varianten existieren. Für die unterschiedlichen Varianten des Oberflächenmoleküls kommen bis zu zehn nebeneinander liegende Exon-Sequenzen in verschiedenen Kombinationen zum Einsatz. Die Varianten sind bei der Embryonalentwicklung, bei der Immunantwort und bei der Bildung vieler bösartiger Tumore von entscheidender Bedeutung.

Zunächst wurde für einen in allen Lebewesen (außer Bakterien) vorkommenden Signalweg (der so genannte MAP-Kinase-Weg) gefunden, dass er über Signalstoffe die Ausprägung verschiedener mRNA aus der selben Gensequenz regulieren kann. Dies wird über ein Produkt des „ras“-Krebsgenes kontrolliert, eines zentralen Signalmoleküls der Zelle, welches in vielen Tumoren unkontrolliert aktiv ist. Darüber hinaus wurde ein Eiweiß (Sam68) identifiziert, das an eine variante Exonsequenz im Vorläufer-Botenmolekül des CD44-Gens bindet und das über den MAP-Kinase-Weg angesteuert und chemisch verändert (phosphoryliert) werden kann. Diese chemische Veränderung ist entscheidend dafür, ob die Exon-Sequenz in der mRNA eingesetzt wird oder inaktiv bleibt.

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Rückfragen bitte unter Telefon 07247/82-2861.

Media Contact

Inge Arnold idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…