Wie kreiselnde Moleküle einzelne Metallatome einfangen und chemisch binden
Koordinationsverbindungen, das heißt Verbindungen aus einem zentralem Übergangsmetallatom, um das sich ein Satz molekularer Liganden schart, sind heute von großem wissenschaftlichen Interesse. Sie spielen bei zahlreichen biologischen Prozessen eine wichtige Rolle und dienen der Erzeugung von neuartigen supramolekularen Werkstoffen. Jetzt ist es einer Forschergruppe am Stuttgarter Max-Planck-Institut für Festkörperforschung erstmals gelungen, die Bildung und das Verhalten einzelner Metall-Molekül-Komplexe direkt zu beobachten und zu steuern (Angewandte Chemie, 16. Dezember 2002 und Journal of the American Chemical Society, 2002).
Mit der Entwicklung der Rastertunnelmikroskopie (engl. scanning tunneling microscopy – STM) in den 1980er Jahren setzte eine radikale Änderung unseres Verhältnisses zur atomaren und molekularen Welt ein. Heute werden mit dieser Technik Moleküle und chemische Prozesse in situ – auf einer Oberfläche – im atomaren Maßstab direkt verfolgt. Darüber hinaus ist es möglich, auch die Translations- und Rotationsbewegungen einzelner Moleküle zu verfolgen. In jüngster Zeit gelang sogar die detaillierte Analyse von supramolekularen Verbindungen, in denen sich verschiedene molekulare Bausteine zu komplexen Einheiten organisieren. Grundlage all dieser komplexen Strukturen sind so genannte nichtkovalente chemische Bindungen, die auf anziehenden zwischenmolekularen Kräften beruhen, wie die Wasserstoff-Brückenbindung oder Metall-Liganden-Wechsel-wirkungen.
Die Max-Planck-Forscher brachten nun einen vergleichsweise einfachen molekularen Baustein – 1,3,5-Benzoltricarbonäure (engl. trimesic acid bzw. tma) – auf ein Kupfersubstrat, um direkte Einblicke in die Entstehung von Koordinationsverbindungen an einer Oberfläche zu erhalten. Auf dem Substrat sind bei Raumtemperatur hochmobile einzelne Kupfer-Atome vorhanden, die mit den reaktiven tma-Liganden wechselwirken können. Mit Hilfe eines Rastertunnelmikroskops gelang es den Wissenschaftlern, die Bewegungen einzelner Moleküle zu verfolgen und zu beobachten, wie die rotierenden tma-Moleküle für einzelne Kupfer-Atome wie eine dynamische „Atomfalle“ wirken (vgl. Zeitrafferfilme unter [1]). Die Forschern konnten auf diese Weise direkt verfolgen, wie sich kleeblattförmige Komplexe (Cu(tma)4) aus einem Kupfer-Atom und vier tma-Molekülen bilden und auch wieder zerfallen. Durch die Beobachtung einzelner Molekülkomplexe konnten sie belegen, dass die Lebensdauer dieser Verbindungen entscheidend von der jeweiligen lokalen chemischen Umgebung abhängt.
In einem zweiten Experiment gelang es den Forschern, einen verwandten kleeblattförmigen Komplex aus Eisenatomen und tma-Molekülen gezielt zu synthetisieren, indem sie die beiden Reaktanten unter geeigneten Bedingungen wiederum auf ein Kupfersubstrat aufbrachten. Da in diesem Fall zwischen dem zentralen Eisen-Atom und den Carbonsäure-Liganden eine stärkere Wechselwirkung besteht, besitzt dieser Komplex eine größere thermische Stabilität, deutlich kürzere Bindungsabstände und eine andere Geometrie. Bei einer detaillierten Analyse der Bindungen stellten die Stuttgarter Forscher fest, dass dieser metallorganische Komplex in zwei spiegelsymmetrischen Konfigurationen vorliegt, ähnlich der Spiegelsymmetrie zwischen unserer linken und rechten Hand. Dieses Phänomen wird in der Chemie als Chiralität (von gr. χειρ : Hand) bezeichnet. Chirale Moleküle spielen insbesondere in der Biologie und Pharmakologie eine wichtige Rolle. Im vorliegenden Fall sind die gebildeten Fe(tma)4-Komplexe in zwei Dimensionen chiral, wobei das Eisen-Atom das so genannte chirale Zentrum bildet.
Die gezielte Verknüpfung von Metallatomen mit organischen Molekülen auf Oberflächen eröffnet vielfältige Perspektiven für Forschung und Anwendung. Zur Zeit arbeiten die Stuttgarter Forscher an der kontrollierten Synthese von räumlich geordneten Netzwerken von Eisen und organischen Liganden. Aufgrund der magnetischen Eigenschaften der eingebundenen Eisenatome sind diese Netzwerke beispielsweise auch von großem Interesse für magnetische Speichertechnologien.
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…