Perfekt verschweißte Nähte für Autokarosserien
Wie von Geisterhand gesteuert rast der Schweißkopf am Roboterarm die Blechteile entlang. Dort, wo der Laser auf das Metall trifft, leuchtet das Blech gleißend hell auf, Funken sprühen. Der Prozess dauert nur wenige Sekunden. Am Ende sind die Außen-haut der Tür und das Trägerprofil perfekt miteinander verschweißt.
Lediglich eine feine Schweißnaht zieht sich durch das Blech. Zu sehen ist sie aber nur von der einen Seite. Auf der anderen Seite der verschweißten Autotür ist nichts zu erkennen. So sieht eine makellose Naht aus – sie ist die Wunschvorstellung vieler Automobilhersteller. Denn bei der Produktion von Karosserieteilen könnte man solche Schweißnähte an jeder beliebigen Stelle anbringen. Teure Nacharbeiten, um die Naht verschwinden zu lassen, wie das Umfalzen des Blechs oder das Abdecken mit Zierleisten, würden entfallen.
Forschern vom Fraunhofer-Institut für Physikalische Messtechnik IPM in Freiburg ist es jetzt gelungen, den Wunsch der Autobauer Wirklichkeit werden zu lassen. »Geregeltes Einschweißen« nennen Experten den Prozess: Dabei durchdringt der Laser nicht alle Bleche, wie beim Durchschweißen, wo kurzzeitig ein Durchschweißloch in der Schmelze zu erkennen ist. Stattdessen wird in das untere Blech nur teilweise eingeschweißt. Bisher war es allerdings nicht möglich, diesen Vorgang so präzise zu regeln, dass die Schweißnaht den Anforderungen an die Festigkeit genügt.
»Da wir kein Durchschweißloch produzieren, können wir im Grunde nicht sehen, was wir tun«, erläutert Andreas Blug, Projektleiter am IPM, die Problematik. Mithilfe einer neuartigen Kamera haben sie dieses Problem aber geschickt gelöst. Die Kamera erzeugt Temperaturbilder. Auf diese Weise erkennt das System, wie tief der Laser in die Bleche vorgedrungen ist. Dort, wo er in das Metall eindringt, entsteht eine Schmelze, die als heiße Region auf den Bildern zu erkennen ist. Erreicht die Unterseite des Schmelzbades den Spalt zwischen Ober- und Unterblech, wird die Wärmeleitung unterbrochen, ein kühlerer Punkt ist zu sehen. Die Experten sprechen vom Einschweißloch. Aus der relativen Häufigkeit dieses Einschweißlochs berechnet das System die Einschweißtiefe in das Unterblech. Eine Software passt dann die Leistung des Lasers gezielt an.
»Diese Prozessregelung erfolgt in Echtzeit«, sagt Blug. Dafür ist eine extrem schnelle Kameratechnik notwendig – genau darin liegt der Clou der IPM-Entwicklung: Das System basiert auf »Cellular Neural Networks«, CNN. Das bedeutet, dass in jedes Pixel ein winziger Prozessor integriert ist. Sie alle arbeiten gleichzeitig und beschleunigen die Auswertung der einzelnen Bilder enorm, während in konventionellen Bildverarbeitungssystemen wenige Prozessoren die Daten der Reihe nach verarbeiten. »Das System wertet so bis zu 14 000 Bilder pro Sekunde aus«, sagt Blug. Gewöhnlich erreicht man nur 1000 bis 2000 Bilder pro Sekunde.
Gemeinsam mit den Kollegen vom Institut für Strahlwerkzeuge IFSW der Universität Stuttgart sowie dem Institut für Grundlagen der Elektrotechnik und Elektronik IEE der TU Dresden haben die IPM-Forscher nun einen Prototypen entwickelt, der das geregelte Einschweißen perfekt beherrscht – und den Autoherstellern einen weiteren enormen Vorteil bietet: Im Gegensatz zum Durchschweißen verdampft an der Nahtunterseite das Zink nicht. Damit gehören Korrosionsprobleme bei verzinkten Karosserien der Vergangenheit an.
Media Contact
Weitere Informationen:
http://www.fraunhofer.de/presse/presseinformationen/2010-2011/17/laser-schweissen.jspAlle Nachrichten aus der Kategorie: Automotive
Die wissenschaftliche Automobilforschung untersucht Bereiche des Automobilbaues inklusive Kfz-Teile und -Zubehör als auch die Umweltrelevanz und Sicherheit der Produkte und Produktionsanlagen sowie Produktionsprozesse.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automobil-Brennstoffzellen, Hybridtechnik, energiesparende Automobile, Russpartikelfilter, Motortechnik, Bremstechnik, Fahrsicherheit und Assistenzsysteme.
Neueste Beiträge
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…
ASXL1-Mutation: Der verborgene Auslöser hinter Blutkrebs und Entzündungen
Wissenschaftler zeigen, wie ein mutiertes Gen rote und weiße Blutkörperchen schädigt. LA JOLLA, CA – Wissenschaftler am La Jolla Institute for Immunology (LJI) haben herausgefunden, wie ein mutiertes Gen eine…