Wie unser Verhalten Spuren im Gehirn hinterlässt
Die in der Fachzeitschrift «Cell» veröffentlichten Ergebnisse gewähren Einblicken in grundlegende Vorgänge der neuronalen Netzwerkbildung und können auch Erkenntnisse für neuronale Erkrankungen wie Autismus oder Schizophrenie liefern.
Die Gruppe des Neurobiologen Prof. Peter Scheiffele konnte einen neuen Mechanismus aufklären, wie Nervenzellen (Neuronen) abhängig von neuronalen Signalen den Aufbau ihres Netzwerks im Gehirn verändern. Die Ergebnisse zeigen, wie sich neuronale Aktivität während der Entwicklung des Nervensystems oder bei Lernprozessen direkt auf die Art der Verbindungen im Nervensystem auswirken kann.
Neurexin-Varianten verändern die Art der Nervenverbindungen
Das Nervensystem ist ein Netzwerk aus einer Vielzahl von Neuronen, die durch Verbindungsstellen, sogenannte Synapsen, miteinander verbunden sind. Da an Synapsen die Nervenimpulse von einem Neuron zum nächsten übertragen werden, sind Aufbau, Anzahl und Art der Synapsen von entscheidender Bedeutung bei der Informationsleitung. Dem Membranprotein Neurexin fällt dabei eine wichtige Rolle bei der Entstehung von Synapsen zu, indem es mit Bindungspartnern zu Nachbarneuronen Kontakt aufnimmt und so die Verbindung zwischen zwei Neuronen herstellt.
Eine Besonderheit von Neurexin ist, dass es in über 3000 Varianten vorkommt, welche an bestimmte Rezeptoren in den Nachbarzellen binden. Die Produktion unterschiedlicher Neurexine findet hauptsächlich durch sogenanntes alternatives Spleissen der RNA statt. Bei diesem Prozess werden je nach Bedingung Varianten von Neurexin mit unterschiedlichen Bindungseigenschaften hergestellt. Wie Neuronen den Spleissprozess steuern, um die jeweils passende Neurexin-Variante herzustellen, war bislang nicht geklärt.
Verändertes Verhalten – veränderte Nervenverbindung
Scheiffeles Gruppe konnte nachweisen, dass die Aktivierung von Neuronen das alternative Spleissen über ein bestimmtes RNA-Bindeprotein beeinflusst. Dieses Bindeprotein bestimmt, welche Neurexin-Variante erzeugt wird. Auf diese Weise können Nervenzellen als Reaktion auf ein neuronales Signal Kontakt zu anderen Nachbarzellen aufnehmen, der ihnen ohne passenden Rezeptor verwehrt bleibt. Die neuronale Verbindung kann somit durch veränderte Aktivität modifiziert werden.
«Dieser neue Regulationsmechanismus gibt einen Einblick, wie unsere Empfindungen und unser Verhalten direkt das neuronale Netzwerk im Gehirn verändern. Wenn ich beispielsweise ein Instrument lerne und die Bewegung meiner Hände trainiere, speichert mein Gehirn diese Information durch entsprechend angelegte Nervenverbindungen», so Scheiffele.
Angesichts der grossen Anzahl an Neurexinen möchte sich die Forschungsgruppe künftig auf die Auswirkungen weiterer Neurexin-Varianten auf das neuronale Netzwerk konzentrieren. Da Veränderungen von Neurexinen auch bei Patienten mit Autismus oder Schizophrenie vorliegen können, könnten die Forschungsergebnisse auch zum besseren Verständnis dieser Krankheiten beitragen.
Originalbeitrag
Takatoshi Iijima, Karen Wu, Harald Witte, Yoko Hanno-Iijima, Timo Glatter, Stéphane Richard, Peter Scheiffele
SAM68 regulates neuronal activity-dependent alternative splicing of Neurexin-1
Cell, Volume 147, Issue 7, 1601-1614, 23 December 2011 | doi: 10.1016/j.cell.2011.11.028
Weitere Auskünfte
Prof. Dr. Peter Scheiffele, Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Tel. +41 61 267 21 94, E-Mail: peter.scheiffele@unibas.ch
Media Contact
Weitere Informationen:
http://www.biozentrum.unibas.ch http://www.cell.com/abstract/S0092-8674%2811%2901373-0Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…
ASXL1-Mutation: Der verborgene Auslöser hinter Blutkrebs und Entzündungen
Wissenschaftler zeigen, wie ein mutiertes Gen rote und weiße Blutkörperchen schädigt. LA JOLLA, CA – Wissenschaftler am La Jolla Institute for Immunology (LJI) haben herausgefunden, wie ein mutiertes Gen eine…