Chemie: Kooperation führt zum Erfolg

Ein Fluoreszenzfarbstoff bringt die modifizierte RNA in der lebenden Zelle zum Leuchten.<br>Uni Innsbruck<br>

In den Biowissenschaften ist RNA-Interferenz heute ein wichtigstes Werkzeug, um die Funktion von Genen zu analysieren. Mit Hilfe von kurzen RNA-Molekülen lassen sich zielgenau bestimmte Gene im Erbgut ausschalten und so zum Beispiel deren biologische Funktion in der Zelle überprüfen. Diese Methode gilt aber auch als Hoffnungsträger für die Entwicklung neuer pharmakologischer Therapien zur Behandlung von Krankheiten.

Um RNA in solchen Gebieten erfolgreich anwenden zu können, muss sie aber in der Regel chemisch angepasst werden. Dadurch wird das Molekül vor Abbauprozessen in der Zelle geschützt, es werden Nebeneffekt minimiert und die Interaktion mit dem Immunsystem unterdrückt. Seit der Entdeckung der RNA-Interferenz wurden bereits zahlreiche solche chemischen Modifikation entwickelt und getestet. Eine sehr einfache Veränderung von RNA-Molekülen wurde bislang allerdings weitgehend vernachlässigt: die Anbindung einer Azidgruppe an das Molekül. Innsbrucker Chemiker um Prof. Klaus Bister vom Institut für Biochemie und Prof. Ronald Micura vom Institut für Organische Chemie haben nun gemeinsam mit dem Straßburger Kristallographen Eric Ennifar diese chemische Modifikation von RNA-Molekülen erstmals erfolgreich getestet.

Chemisch verändert, biologisch gleich wirksam

„Diese Modifikation wurde bisher nicht untersucht, weil sie mit der Standardmethode nicht synthetisiert werden kann“, erzählt Ronald Micura. „Wir haben nun aber einen Weg gefunden, wie wir – auf bestehenden Verfahren aufsetzend – die Azidgruppe an die RNA anbinden können.“ Nach der Bestimmung der dreidimensionalen Kristallstruktur an der Universität Straßburg, überprüfte die Arbeitsgruppe um Klaus Bister die biologische Funktion der modifizierten RNA. „Wir haben für das Experiment ein RNA-Molekül ausgewählt, welches das Gen BASP1 gezielt blockieren kann“, sagt Bister. „Da wir dieses Gen aufgrund seiner Rolle in der Krebsentwicklung seit längerem intensiv untersuchen, war dieses Vorhaben für uns von großem Interesse.“ Die biologischen Analysen in Innsbruck zeigten, dass die chemische Ergänzung der RNA keinen Einfluss auf deren biologische Funktion hat. „Das ist sehr wichtig für jede weitere Anwendung“, erklärt die Erstautorin der nun publizierten Arbeit, Katja Fauster. „Diese Modifikation hat darüber hinaus noch den Vorteil, dass sie reaktiv ist. Das heißt, wir können an die Azidgruppe weitere Moleküle andocken.“ Im Experiment der Innsbrucker Chemiker wurde dies dazu genutzt, um mit einem fluoreszierenden Farbstoff die RNA in der Zelle zum Leuchten zu bringen.

Kommunikativer Neubau

Gerade erst im neuen Innsbrucker Centrum für Chemie und Biomedizin (CCB) gemeinsam eingezogen, präsentieren die beiden Arbeitsgruppen um Bister und Micura damit ein sehr erfolgreiches Beispiel interdisziplinärer Zusammenarbeit innerhalb des Schwerpunkts für Molekulare Biowissenschaften (CMBI) an der Universität Innsbruck. „Heute trennt uns räumlich nur noch eine Stiege“, freut sich Klaus Bister über die Arbeitsbedingungen im neuen Gebäude am Inn. Die kommunikative Gestaltung des Neubaus lässt auf weitere erfolgreiche gemeinsame Projekte innerhalb des Forschungsschwerpunkts hoffen. Unterstützt wurden die Innsbrucker Forscherinnen und Forscher vom österreichische Wissenschaftsfonds FWF sowie im Rahmen des GEN-AU-Forschungsprogramms des österreichischen Wissenschaftsministeriums.

Rückfragehinweis:
Univ.-Prof. Dr. Klaus Bister
Institut für Biochemie
Universität Innsbruck
Tel.: +43 512 507 57500
E-Mail: klaus.bister@uibk.ac.at
Univ.-Prof. Dr. Ronald Micura
Institut für Organische Chemie
Universität Innsbruck
Tel.: +43 512 507 57710
E-Mail: ronald.micura@uibk.ac.at
Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507 32022
E-Mail: christian.flatz@uibk.ac.at
Weitere Informationen:
dx.doi.org/10.1021/cb200510k – 2′-Azido RNA, a Versatile Tool for Chemical Biology: Synthesis, X-ray Structure, siRNA Applications, Click Labeling. Katja Fauster, Markus Hartl, Tobias Santner, Michaela Aigner, Christoph Kreutz, Klaus Bister, Eric Ennifar, Ronald Micura. ACS Chem. Biol., 2012, 7 (3), pp 581-9

http://www.uibk.ac.at/cmbi/ – Schwerpunkt für Molekulare Biowissenschaften (CMBI)

Media Contact

Dr. Christian Flatz Universität Innsbruck

Weitere Informationen:

http://www.uibk.ac.at/cmbi/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Buntbarsche betreiben Brutpflege in 3D-gedruckten Muscheln

Zeit zum Auszug? Enthüllte Einblicke in die Brutpflege von Buntbarschen

Muschelbewohnende Buntbarsche kümmern sich intensiv um ihre Nachkommen, die sie in verlassenen Schneckenhäusern aufziehen. Ein Team des Max-Planck-Instituts für Biologische Intelligenz verwendete 3D-gedruckte Schneckenhäuser, um herauszufinden, was im Inneren passiert….

Amphiphil-angereichertes tragbares Gewebe, das Energie aus Bewegung erzeugt

Intelligente Textilien: Innovative bequeme Wearable-Technologie

Forscher haben neue Wearable-Technologien demonstriert, die sowohl Strom aus menschlicher Bewegung erzeugen als auch den Komfort der Technologie für die Träger verbessern. Die Arbeit basiert auf einem fortgeschrittenen Verständnis von…

Visualisierung der stabilen Atlantischen meridionalen Umwälzzirkulation (AMOC) über 60 Jahre

Stabilität bewahren – Studie zeigt, dass Golfstrom im Nordatlantik robust bleibt

Eine Studie der Universität Bern und der Woods Hole Oceanographic Institution in den USA kommt zu dem Schluss, dass die ozeanische Zirkulation im Nordatlantik, zu der auch der Golfstrom gehört,…