Vielseitige GMR-Potentiometer
Der Markt für elektromechanische Produkte, für die es besonders in der Automobilindustrie vielfältige Anwendungen gibt, benötigt zuverlässige und robuste Sensoren zur berührungslosen Geschwindigkeitsmessung, Positionserfassung oder Steuerung elektronischer Signale. Werkstoffe, die den Effekt des Riesen-Magnetowiderstandes (Giant Magnetoresistance) zeigen, sind eine kostengünstige Lösung für diese Art von berührungslosen Messungen.
Sensoren sind unverzichtbare Bauelemente von elektronischen Steuerungssystemen, wie sie heute in den meisten Anwendungen anzutreffen sind. Sie wandeln physikalische Größen wie z.B. Druck oder Beschleunigung in messbare Ausgangsgrößen oder Signale um, die wiederum als Eingangsgrößen für Steuerungssysteme dienen. Sie werden immer häufiger eingesetzt, weil auch die Sicherheits- und Leistungsanforderungen ständig steigen, und das wiederum zieht neue Entwicklungen auf dem Gebiet der Sensortechnologie nach sich. GMR-Sensoren sind zwar nur einer der vielen Sensortypen, die heute verbreitet eingesetzt werden, zeichnen sich aber durch einzigartige technische Vorzüge aus.
Sie basieren auf dem Effekt des Riesen-Magnetowiderstandes, der Ende der 1980er Jahre entdeckt wurde und überwiegend quantenmechanischer Natur ist. Wie sich gezeigt hat, erreicht man bei niedrigen Temperaturen mit Strukturen aus übereinanderliegende Schichten von Eisen und anderen magnetischen Metallen einen Magnetowiderstand von mehr als 50%. Die Dicke dieser Schichtstrukturen, die sehr empfindlich auf Magnetfelder reagieren, liegt in der Größenordnung einiger Nanometer. Während Sensoren mit konventionellem Magnetowiderstand auf die magnetische Feldstärke reagieren, reagieren GMR-Sensoren hauptsächlich auf die Richtung des Magnetfeldes und weniger auf dessen Intensität. Deshalb sind mögliche Störeffekte durch den Luftspalt, wie er gewöhnlich zwischen Sensor und Magnet vorhanden sind, bei GMR-Sensoren vernachlässigbar.
Im Rahmen eines europäischen Forschungsprojekts entwickelten mehrere Unternehmen einen Kupfer-Blei-Sensor, der für die Richtung und nicht die Intensität des Magnetfeldes empfindlich ist. Die GMR-Technologie wurde zur Entwicklung neuer Potentiometer genutzt, die strengen Anforderungen bezüglich ihrer Lebensdauer unter erschwerten Betriebsbedingungen wie z.B. Vibrationen und Beschleunigungen unterliegen. Die Potentiometer wurden in Form von anwendungsspezifischen integrierten Schaltungen (Application Specific Integrated Circuits, ASICs) in CMOS-Technologie (Complementary Metal Oxide Semiconductor) realisiert, verfügen über verschiedene Ausgänge und sind hauptsächlich – aber keineswegs ausschließlich – in der Automobiltechnik einsetzbar.
Für die GMR-Sensoren bieten sich zahlreiche Anwendungsmöglichkeiten, in denen Positionen (z.B. Entfernungen, Geschwindigkeiten, Drehzahlen, Drehungen) berührungslos erfasst und berührungslose Messungen vorgenommen werden müssen. GMR-Potentiometer bieten entscheidende Vorteile gegenüber Kontakt-Potentiometern oder berührungslosen Potentiometern mit konventionellem Magnetowiderstand: Sie haben eine längere Lebensdauer, da sie keinem mechanischen Verschleiß unterliegen, und sind folglich die kostengünstigere Lösung.
Kontakt:
Navarra De Componentes Electronicos, S.A. (Nacesa)
Poligono Industrial S/N , 31500 Tudela, Spanien
Senior Enrique Catalan
Tel: +34-948 – 820450
Email: ecatalan@piher-nacesa.com
Media Contact
Weitere Informationen:
http://www.piher-nacesa.comAlle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Wegweisend für die Diagnostik
Forschende der Universität Jena entwickeln Biosensor auf Graphen-Basis. Zweidimensionale Materialien wie Graphen sind nicht nur ultradünn, sondern auch äußerst empfindlich. Forschende versuchen deshalb seit Jahren, hochsensible Biosensoren zu entwickeln, die…
Rotorblätter wiederverwenden
h_da-Team als „Kultur- und Kreativpilot*innen Deutschland“ ausgezeichnet. Rotorblätter von Windkraftanlagen wiederverwenden statt zu entsorgen: Das „Creative Lab rethink*rotor“ am Fachbereich Architektur der Hochschule Darmstadt (h_da) zeigt, dass sich hieraus Schallschutzwände…
Weltweit erstes Zentrum für Solarbatterien
Strategische Partnerschaft zur Optoionik von TUM und Max-Planck-Gesellschaft. Energie von Sonnenlicht direkt elektrochemisch speichern Optoionik als Querschnittswissenschaft zwischen Optoelektronik und Festkörperionik Bayern als internationaler als Innovationsführer bei solarer Energiespeicherung Das…