Schaltbare Magneten im Nano-Format

Computermodell der Doppelschicht von Spincrossover-Molekülen auf einer Goldoberfläche: Mit der STM-Spitze des Rastertunnelmikroskops lassen sich einzelne Moleküle schalten.<br> Bild & Copyright: Holger Naggert & Thiruvancheril Gopakumar<br>

Moleküle als Datenspeicher anstelle von elektronischen oder magnetischen Speicherzellen nutzen zu können, würde die Datenspeicherung revolutionieren. Molekulare Speicherzellen wären tausendfach kleiner als herkömmliche.

Wissenschaftlerinnen und Wissenschaftler der Christian-Albrechts-Universität zu Kiel (CAU) sind nun der molekularen Speicherzelle einen großen Schritt näher gekommen.

Es gelang ihnen, den Magnetismus von einzelnen, so genannten Spincrossover-Molekülen, mithilfe von Elektronenübertragung gezielt ein- und auszuschalten. Die interdisziplinäre Studie aus dem von der Deutschen Forschungsgemeinschaft (DFG) geförderten Sonderforschungsbereich 677 „Funktion durch Schalten“ belegt, dass das Speichern von Informationen auf den Molekülen technisch machbar ist. Die Arbeit wird am 25. Juni in der Fachzeitschrift Angewandte Chemie veröffentlicht.

„Wir wussten, dass es prinzipiell möglich ist, Information in einem einzelnen Molekül zu speichern, doch Techniken, mit denen sich dies realisieren lässt, werden erst seit kurzem nach und nach verfügbar“, erläutert Projektleiter Professor Richard Berndt vom Institut für Experimentelle und Angewandte Physik der CAU die Motivation zu der Untersuchung. Seit den 1980er Jahren, so Berndt, werden einzelne Moleküle an Oberflächen mit Rastertunnelmikroskopen abgebildet. In der aktuellen Forschung ginge es darum, gezielt bestimmte Moleküleigenschaften zu verändern und damit langfristig technische Anwendungen zu ermöglichen. Auch der Sonderforschungsbereich 677 „Funktion durch Schalten“ an der Kieler Universität befasst sich mit solchen Untersuchungen, um letztlich molekulare Maschinen herstellen zu können.

In der vorliegenden Studie ging es um den Magnetismus eines Moleküls. Mit einem Rastertunnelmikroskop gelang es Berndts Mitarbeiter Dr. Thiruvancheril Gopakumar, die magnetischen Eigenschaften einzelner Moleküle zwischen zwei Zuständen zu schalten. Obwohl die Moleküle dabei in dicht gepackten Schichten lagen, konnte er einzelne Moleküle auswählen und diese gezielt schalten. Die gezielte Kontrolle über einzelne Moleküle macht das Speichern von Informationen möglich. „Weltweit versuchen viele Arbeitsgruppen die magnetischen Eigenschaften von Molekülen zu beherrschen. Gopakumar bringt mit diesen Messungen das Feld einen wichtigen Schritt voran“, freut sich Berndt.

Die Moleküle (Spincrossover-Komplexe) wurden am Institut für Anorganische Chemie der CAU hergestellt. „Auch wenn die Suche nach geeigneten Molekülen sehr langwierig war, sind wir mit diesem Ergebnis sehr zufrieden“, betont Professor Felix Tuczek, Leiter der Arbeitsgruppe Anorganische Molekülchemie. Als nächstes, sagt er, wolle man die Moleküle derart verändern, dass sie sich auch mit Licht und bei höheren Temperaturen schalten ließen.

Originalpublikation:
Gopakumar, TG, Matino, F, Naggert, H, Bannwarth, A, Tuczek, F, Berndt R (2012): Elektroneninduzierter Spin-Crossover von Einzelmolekülen in einer Doppellage auf Gold, doi: 10.1002/ange.201201203, http://onlinelibrary.wiley.com/doi/10.1002/ange.201201203/pdf

Weitere Informationen zum Sonderforschungsbereich 677:
http://www.sfb677.uni-kiel.de

Kontakt:
Prof. Dr. Richard Berndt
Institut für Experimentelle und Angewandte Physik
Tel.: +49 (431) 880-3946
e-mail: berndt@physik.uni-kiel.de

Media Contact

Dr. Boris Pawlowski idw

Weitere Informationen:

http://www.uni-kiel.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Menschen vs Maschinen – Wer ist besser in der Spracherkennung?

Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…

KI-System analysiert subtile Hand- und Gesichtsgesten zur Gebärdenspracherkennung.

Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung

Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…

Forscherin Claudia Schmidt analysiert durch Gletscherschmelze beeinflusste Wasserproben arktischer Fjorde.

Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme

Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…