Laserstrahl als Platzanweiser für Moleküle

3D-Muster, erzeugt durch Photografting (180 µm Breite). Grün fluoriszierende Moleküle werden in einem Hydrogel fixiert. TU Wien<br>

Es gibt heute viele Methoden, dreidimensionale Objekte auf der Größenskala von Mikrometern herzustellen. Doch was kann man tun, wenn man auch die chemischen Eigenschaften eines Materials mikrometergenau bestimmen möchte?

An der TU Wien wurde nun eine Methode entwickelt, mit einem Laserstrahl bestimmte Moleküle punktgenau an gewünschten Stellen andocken zu lassen. Beim Züchten von biologischem Gewebe könnte man so durch präzise chemische Signale vorgeben, an welchen Stellen sich einzelne Zellen anlagern sollen. Auch für die Sensorik eröffnen sich spannende Chancen:

Ein winziges, dreidimensionales „Labor im Chip“ wäre möglich, in dem exakt angeordnete Moleküle auf die Stoffe der Umgebung reagieren.

Materialwissenschaft und Chemie

„3D-Photografting“ heißt die neue Methode. Zwei Arbeitsgruppen der TU Wien arbeiteten bei diesem Projekt eng zusammen: Das Materialwissenschafts-Team von Prof. Jürgen Stampfl und die Gruppe um Prof. Robert Liska aus dem Bereich makromolekulare Chemie.

Die beiden Forschungsgruppen machten schon in der Vergangenheit mit neuartigen 3D-Druckern auf sich aufmerksam. Für die Anwendungen, um die es diesmal geht, wären 3D-Druckverfahren allerdings nicht zielführend gewesen: „Ein Material aus winzigen Bausteinen mit unterschiedlichen chemischen Eigenschaften zusammenzusetzen ist extrem aufwendig“, erklärt Aleksandr Ovsianikov vom Institut für Werkstoffwissenschaften der TU Wien. „Man geht daher von einem bestehenden dreidimensionalen Gerüst aus und bringt punktgenau an den gewünschten Stellen bestimmte Moleküle an.“
Moleküle im Hydrogel – fixiert vom Laserstrahl

Die Ausgangsbasis bildet ein sogenanntes Hydrogel – ein Material aus Makromolekülen, die in einem sehr lockeren Netzwerk angeordnet sind. Zwischen ihnen bleiben große Lücken, durch die sich andere Moleküle, oder auch ganze Zellen, hindurchbewegen können.

Maßgeschneiderte Moleküle werden in dieses Hydrogel-Netz eingebracht, dann werden bestimmte Stellen mit einem Laser bestrahlt. Dort, wo der fokussierte Laser besonders intensiv ist, wird eine photochemisch labile Bindung der Moleküle gebrochen. Dadurch werden reaktive Intermediate gebildet, die sich lokal sehr rasch in das Netzwerk des Hydrogels einbauen. Die erreichbare Genauigkeit hängt vom verwendeten Laser-Linsensystem ab. An der TU Wien konnte eine Auflösung von 4 µm erreicht werden. „Ähnlich wie ein Maler nach Belieben Farbe auf verschiedenen Stellen der Leinwand aufträgt, werden Moleküle am Hydrogel fixiert – allerdings in drei Dimensionen und mit höchster Präzision“ erklärt Robert Liska.

Moleküle als chemisches Signal für Zellen

Einsetzbar ist die neue Methode zum Beispiel für die künstliche Erzeugung von biologischem Gewebe. Ähnlich wie eine Kletterpflanze, die entlang eines Gerüsts nach oben wächst, brauchen auch Zellen eine Vorgabe, an der sie sich anlagern. In natürlichem Gewebe wird das durch die „extrazelluläre Matrix“ gewährleistet – einer Struktur, die den Zellen durch bestimmte Aminosäure-Sequenzen signalisiert, wo sie andocken müssen.

Man versucht daher, im Labor ähnliche chemische Signale zu setzen. Experimente mit der Anlagerung von Zellen auf zweidimensionalen Flächen gab es bereits, doch zur Herstellung größerer Gewebe, die eine innere Struktur haben (etwa Blutkapillaren), ist ein echtes 3D-Verfahren unverzichtbar.
Mini-Sensoren spüren Moleküle auf

Je nach Anwendungsgebiet kann man für diese Technik ganz unterschiedliche Moleküle verwenden – so kann das „3D-Photografting“ nicht nur für Bio-Engineering nützlich sein, sondern etwa auch für die Herstellung von Solarzellen dienen. Auch in der Sensorik verspricht man sich viel von dieser Technologie: Punktgenau kann man damit Moleküle anordnen, die bestimmte chemische Substanzen binden und sie damit nachweisbar machen. Ein mikroskopisches „Labor im Chip“ wird damit möglich.
Rückfragehinweise:
Dr. Aleksandr Ovsianikov
Institut für Werkstoffwissenschaft und Werkstofftechnologie
Technische Universität Wien
Favoritenstr. 9-11, 1040 Wien
T: +43-1-58801-30830
aleksandr.ovsianikov@tuwien.ac.at

Aussender:
Dr. Florian Aigner
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T.: +43-1-58801-41027
florian.aigner@tuwien.ac.at

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Menschen vs Maschinen – Wer ist besser in der Spracherkennung?

Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…

KI-System analysiert subtile Hand- und Gesichtsgesten zur Gebärdenspracherkennung.

Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung

Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…

Forscherin Claudia Schmidt analysiert durch Gletscherschmelze beeinflusste Wasserproben arktischer Fjorde.

Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme

Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…