Cyborg-Gewebe vereint Elektronik und Biologie
Wissenschaftler der Universität Harvard haben es erstmals geschafft, elektrische Sensoren direkt mit lebendem Gewebe zu kombinieren. Dazu ließen sie Zellen entlang eines Kollagen-Gerüstes wachsen, in das ein Geflecht aus Nano-Drähten und Sensoren eingebettet wurde.
Das entstandene Gewebe umschließt die elektronischen Bauteile vollständig und ermöglicht eine direkte Messung elektronischer und chemischer Vorgänge im organischen Material, ohne dieses zu beschädigen. Die komplette schadlose Einbettung von Technologie in lebendes Gewebe ist laut den Forschern eine Weltpremiere.
Herzfrequenz messen
Die Forscher haben ihre Ergebnisse erzielt, indem sie in ein Gerüst aus Kollagen und 80 Nanometer dünnen Siliziumdrähten Zellkulturen eingebracht haben, die anschließend zum Wachsen angeregt wurden. Die Forscher haben bisher schon mit verschiedenen Zelltypen gearbeitet, darunter Herz-, Nerven- und Muskelzellen sowie Blutgefäßen. Die im Gewebe eingearbeiteten Drähte funktionieren als Sensoren, mit denen die Forscher Vorgänge im Inneren der Zellverbände messen können, ohne Schäden an der lebenden Komponente des Hybrid-Geflechts zu verursachen.
„Unsere bisherigen Methoden zur Überwachung von lebenden Zellen sind begrenzt und gingen mit Schäden am Gewebe einher“, sagt Charles Lieber, Mitglied der Forschungsgruppe um Bozhi Tian, die die neue Methode zur Kombination von Biologie und Elektronik entwickelt hat, in einer Presseaussendung. Bislang wurden fast ausschließlich Ratten-Zellen für die Experimente verwendet.
Die Wissenschaftler haben es aber auch geschafft, ein 1,5 Zentimeter langes menschliches Blutgefäß entlang der Nanodrähte wachsen zu lassen. Bei der Verwendung der Herzzellen ist es bereits gelungen, die Kontraktionsfrequenz mittels der elektronischen Komponente des Gewebves zu bestimmen, also praktisch den Herzschlag zu messen.
Kommunikation mit Zellen
Auch eine pH-Wert-Messung im Gewebe von Blutgefäßen ist den Forschern schon gelungen. In Zukunft wollen sie daran arbeiten, dass die Kommunikation in beide Richtungen funktioniert. „Wir wollen das Gewebe so verkabeln, dass wir mit ihm kommunizieren können, wie es ein biologisches System tut“, sagt Lieber. Die Ergebnisse der Wissenschaftler wurden in der Fachzeitschrift Nature Materials http://bit.ly/OpVNRK veröffentlicht .
In Zukunft könnten Gewebe mit integrierten Schaltkreisen dazu dienen, Tierversuche unnötiger zu machen, da die Auswirkungen von Medikamenten direkt gemessen werden können. Längerfristig sind die möglichen Anwendungen in der Medizin riesig. So können theoretisch Veränderungen im Körper in Echtzeit gemessen und angemessene Aktionen gesetzt werden, etwa in Form von elektrischen Impulsen oder Medikamenten.
Media Contact
Weitere Informationen:
http://www.harvard.eduAlle Nachrichten aus der Kategorie: Interdisziplinäre Forschung
Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.
Neueste Beiträge
Wirksamkeit von Metformin zur primären Krebsprävention
Eine Studie der Deutschen Krebshilfe bietet Menschen mit Li-Fraumeni-Syndrom neue präventive Strategien: Forschende der Medizinischen Hochschule Hannover (MHH) untersuchen in einer neuen Wirksamkeitsstudie erstmals, ob das krebsfreie Überleben bei LFS-Betroffenen…
Innovative Algorithmen für eine nachhaltige und flexible KI
Die Entwicklung und der Einsatz künstlicher Intelligenz verschlingen jede Menge Ressourcen. Das neue BMBF-geförderte Forschungsprojekt COMFORT will das ändern. Verantwortlich dafür ist der Würzburger Mathematiker Leon Bungert. Keine Frage: Das…
Neue Rezeptur für Gleistragplatten
Mit einem Material aus recycelten Kunststoffen und alten Rotorblättern soll die betonlastige Eisenbahninfrastruktur in Deutschland modernisiert werden. Sie unterhalten sich über Mischungen, Mischungsverhältnisse und Zusatzstoffe und es klingt, als seien…