Fraunhofer LBF präsentiert Strukturüberwachung an großen Faserverbundbauteilen und neues Enteisungsverfahren für Flugzeugflügel
Mit den Panels ist es den Darmstädter Ingenieuren gelungen, große CFK-Teile zu entwickeln, zu bauen und mit einer Last von zwanzig Tonnen zu testen. Die beheizbare Flügelvorderkante repräsentiert ein neues nanomaterial-basiertes Deicing-System für Flugzeugstrukturen.
Treibstoffverbrauch, Schadstoffemissionen und Lärm sind die Dauerthemen der Luftfahrt. Neuartige Rumpfstrukturen, häufig aus Kunststoffen gefertigt und mit strukturintegrierten Funktionen, machen die Luftfahrt umweltfreundlicher und sicherer. Haltbarkeit und Zuverlässigkeit dieser neuen Strukturen müssen jedoch überwacht werden.
Neue Dimension bei der Strukturüberwachung
Zur Strukturüberwachung von Flugzeugteilen aus Kunststoff können unterschiedliche Sensorsysteme eingesetzt werden. Auf der Messe zeigen Fraunhofer-Forscher große Faserverbundbauteile, sog. „Panels“ mit zweikanal-Lichtleitern zur Lastüberwachung und Piezokeramik-Sensoren bzw. Aktoren zur Überwachung der strukturellen Integrität mittels akustischer Methoden. Eine miniaturisierte Hardware dient der Datenüberwachung.
Mit der Entwicklung und Herstellung der präsentierten Panels betreten die Fraunhofer-Ingenieure eine neue Dimension der Strukturüberwachung. Erstmals ist es hier gelungen, die komplette Entwicklungskette von der Idee bis zum Test mit einer Last von 20 Tonnen zu schließen. Die Entwicklungskette umfasste im Falle der Ausstellungsstücke die Auslegung der Struktur mit Hilfe der Finite-Elemente-Methode (FEM), die Detailkonstruktion und Zeichnungsableitung mit CAD, die Konstruktion von Formwerkzeugen und Einspannungen sowie die prototypische Fertigung der Panels mit strukturintegrierten faseroptischen Dehnungssensoren und Sensoren zur Impact-Schadenserkennung.
Ein weiteres Novum bei der Überwachung mit strukturintegrierten Sensoren ist ein am Fraunhofer LBF entwickeltes innovatives Steckerkonzept. Erstmals wurden die neuen Stecker in einem seriennahen Fertigungsprozess eingesetzt. Die so bestückten Panels wurden zerstörungsfrei geprüft mit Lock-In-Thermographie, Ultraschall, Röntgentechnik und zerstörend mit Impact- sowie Ermüdungs- und Restfestigkeitsversuchen.
Nanomaterial-basiertes Deicing-System
Auch für andere integrierte Funktionen in Faserverbundbauteilen sind neue Materialien und Verfahren erforderlich, z.B. für die Enteisung von Flugzeugflügeln oder -propellern. Denn die bisher eingesetzten konventionellen Wärmeleiter für Metallkonstruktionen sind für Kunststoffe ungeeignet, da die Werkstoffe unterschiedliches mechanisches und thermisches Verhalten zeigen.
Die Forscher des Fraunhofer LBF haben auf der Basis von Nanomaterialien neue Methoden zur Enteisung von Flugzeugstrukturen aus Faserverbundwerkstoffen entwickelt. Die Technologie ihrer innovativen Heizelemente wird bereits im Fertigungsprozess integriert und ist sofort einsetzbar. Eine höhere Zuverlässigkeit dieser angepassten Materialpaarung verlängert die Lebensdauer der Bauteile und schont Ressourcen.
Fraunhofer-Allianz Leichtbau
Da die Qualität von Leichtbaustrukturen wesentlich durch die Werkstoffeigenschaften, die konstruktive Formgebung, die Bauweise und den Herstellungsprozess bestimmt wird, haben sich die Institute, die an diesen Themen forschen, zur Fraunhofer-Allianz Leichtbau zusammengeschlossen. Sprecher dieser Allianz ist LBF-Institutsleiter Prof. Dr.-Ing. Holger Hanselka. Gemeinsam bearbeiten die Mitglieder die gesamte Entwicklungskette von der Werkstoff- und Produktentwicklung über Serienfertigung bis zur Zulassung und den Produkteinsatz. Die Entwicklung, Fertigung und Prüfung von Prototypen aus Faserverbundwerkstoffen auch mit besonderen Technologien wie der Funktionsintegration von Sensoren ist eine Domäne des Fraunhofer LBF.
Das Fraunhofer LBF entwickelt, bewertet und realisiert mit ganzheitlicher Kompetenz in Betriebsfestigkeit, Adaptronik, Systemzuverlässigkeit und Kunststoffen unter Leitung von Professor Holger Hanselka gemeinsam mit dem assoziierten Fachgebiet Systemzuverlässigkeit und Maschinenakustik SzM an der TU Darmstadt im Team von rund 450 Mitarbeitern maßgeschneiderte Lösungen für alle Sicherheitsbauteile – vom Werkstoff bis zum System, von der Idee bis zum Produkt. Automobil- und Nutzfahrzeugbau, Schienenverkehrstechnik, Schiffbau, Maschinen- und Anlagenbau, Luftfahrt, Energietechnik und andere Branchen nutzen die ausgewiesene Expertise und modernste Technologie auf mehr als 11 560 Quadratmeter Labor- und Versuchsfläche an den Standorten Bartningstraße und Schlossgartenstraße.
Redaktion:
Anke Zeidler-Finsel
Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF
Institutsleiter: Prof.-Dr.-Ing. Holger Hanselka
Bartningstraße 47
64289 Darmstadt
Telefon +49 6151 705-268
www.lbf.fraunhofer.de
anke.zeidler-finsel@lbf.fraunhofer.de
Weiterer Ansprechpartner Presseservice:
Ingo Fleuchaus
PR-Agentur Solar Consulting GmbH
79072 Freiburg
Telefon +49 761 38 09 68-21
fleuchaus@solar-consulting.de
Wissenschaftlicher Kontakt:
Dipl.-Ing. Martin Lehmann
Telefon +49 6151 705-416
martin.lehman n@lbf.fraunhofer.de
Fraunhofer LBF
Ingo Fleuchaus
Projektleiter Public Relations
Solar Consulting GmbH
Agentur für nachhaltige Kommunikation / Agency for Sustainable Communications
Solar Info Center
Emmy-Noether-Straße 2
79110 Freiburg
Tel.: +49/761/38 09 68-21
Fax: +49/761/38 09 68-11
E-Mail: fleuchaus@solar-consulting.de
www.solar-consulting.de
Media Contact
Weitere Informationen:
http://www.lbf.fraunhofer.deAlle Nachrichten aus der Kategorie: Messenachrichten
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…