Richtungsweisende Molekülachse unter Elektronenbeschuss

Winkelverteilung langsamer Elektronen aus Elektronenstoßionisation des Wasserstoffmoleküls: experimentelle Datenpunkte (rot), Theorie (schwarz). Die Emssion erfolgt vorzugsweise entlang der Molekülachse (blau).<br><br>Grafik: MPIK<br>

Die Ausrichtung der gasförmig vorliegenden Moleküle wurde nach dem Stoß anhand der Flugrichtung molekularer Bruchstücke bestimmt. Offenbar wird das aus dem Molekül herausgeschlagene Elektron durch die positiven Atomkerne stark abgelenkt und vorzugsweise entlang der Molekülachse emittiert. (Phys. Rev. Lett., 19.09.2012 online)

Auf welche Weise Atome und Moleküle im Stoß mit Elektronen ionisiert werden hat wichtige Konsequenzen für das Verhalten von vielen physikalischen Systemen, von Gasentladungen in Lampen und Lasern bis zu astrophysikalischen Plasmen. Im Experiment kann man auf den genauen Ablauf von Stößen zwischen Elektronen und Molekülen durch die Messung der Impulse aller beteiligten Teilchen vor und nach dem Stoß schließen. Doch welchen Einfluss hat hier die räumliche Ausrichtung eines Gasmoleküls? Dies wurde bisher unter Physikern sogar beim molekularen Wasserstoff H2, dem einfachsten aller Moleküle, kontrovers diskutiert [1]. Die experimentelle Bestimmung der zufällig orientierten Achse eines Gasmoleküls ist jedoch schwierig.
Vor kurzem gelang dies Heidelberger Physikern bei der Ionisation von Wasserstoffmolekülen, indem sie molekulare Bruchstücke nachwiesen und aus deren Flugrichtung auf die räumliche Ausrichtung des anfänglich intakten Moleküls schlossen. Es zeigte sich jedoch, dass die Molekülachse bei den meisten Stößen keine große Rolle spielt. Dies liegt daran, dass sich die Elektronenhülle im Wasserstoffmolekül über einen, verglichen mit dem Kernabstand, sehr großen Raumbereich ausdehnt und fast kugelförmig ist.

In den jüngsten Experimenten gelang es den Forschern jedoch große Streuwinkel des Projektils zu beobachten, bei denen der Stoß mit dem molekularen Elektron sehr nahe an einem Atomkern stattfindet. Dabei werden die herausgeschlagenen Elektronen beim Verlassen des Moleküls durch die positiven Kerne stark abgelenkt und mit größerer Wahrscheinlichkeit entlang der Molekülachse emittiert. Dieser Effekt wird umso stärker, je langsamer das auslaufende Elektron ist. Mit dieser Messung konnte der Ursprung der Winkelverteilung der ionisierten Elektronen, die bisher nur an zufällig ausgerichteten Molekülen gemessenen wurde [2], erstmals aufgeklärt werden.

In Zukunft wird die hier entwickelte experimentelle Technik auch die Untersuchung größerer, auch biologisch relevanter Moleküle ermöglichen und damit zum Verständnis der Entstehung von Strahlenschäden in biologischem Gewebe beitragen.

[1] Al-Hagan et al., Nature Physics 5 , 59 (2009).

[2] A. Senftleben, O. Al-Hagan, T. Pflüger, X. Ren, D. Madison, A. Dorn and J. Ullrich, J. Chem. Phys. 133, 044302 (2010).

Originalveröffentlichung:
Strong Molecular Alignment Dependence of H2 Electron Impact Ionization Dynamics, X. Ren, T. Pflüger, S. Xu, J. Colgan, M. S. Pindzola, A. Senftleben, J. Ullrich and A. Dorn, Phys. Rev. Lett. 109, 123202 (2012).

Kontakt:
PD Dr. Alexander Dorn
Tel.: +49 6221 516-513
E-Mail: alexander.dorn at mpi-hd.mpg.de

Media Contact

Dr. Bernold Feuerstein Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Menschen vs Maschinen – Wer ist besser in der Spracherkennung?

Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…

KI-System analysiert subtile Hand- und Gesichtsgesten zur Gebärdenspracherkennung.

Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung

Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…

Forscherin Claudia Schmidt analysiert durch Gletscherschmelze beeinflusste Wasserproben arktischer Fjorde.

Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme

Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…