Künstlicher Blutmacher: EPO
„Blut ist ein ganz besonderer Saft“ – im „Faust“ legte schon Goethe diese Erkenntnis seinem Mephisto in den Mund. Wenn Blut ein besonderer Saft ist, muss Erythropoietin (EPO) ein ganz besonderes Molekül sein, denn es sorgt für die Bildung unserer roten Blutkörperchen. Amerikanischen Wissenschaftlern ist nach zehnjähriger intensiver Forschung nun erstmals gelungen, dieses besondere Molekül vollständig synthetisch herzustellen – ein bedeutender Meilenstein für das Gebiet der chemischen Synthese komplexer biologischer Moleküle.
Das Hormon EPO wird vor allem in der Niere gebildet. EPO bringt die Stammzellen im Knochenmark dazu, sich in Erythrozyten (rote Blutkörperchen) weiterzuentwickeln. Bei vermindertem Sauerstoffgehalt des Blutes wird die Biosynthese von EPO hochgefahren, sodass in der Folge mehr Erythrozyten entstehen. EPO ist ein wichtiges Medikament. So erhalten es Dialysepatienten, bei denen die Blutbildung infolge eines Nierenversagens gestört ist, und Krebspatienten nach aggressiven Chemo- und Radiotherapien. EPO wurde von schwarzen Schafen unter Radrennfahrern und anderen Sportlern missbraucht, um ihre Leistungsfähigkeit zu steigern.
Bisher konnte nur die Natur EPO herstellen. Der Wirkstoff muss biotechnologisch mithilfe von Mikroorganismen gewonnen werden. Nun erzielte das Team um Samuel J. Danishefsky vom Sloan-Kettering Institute for Cancer Research in New York endlich den Durchbruch und stellte EPO erstmals komplett im Labor her. Um dieses so komplexe Biomolekül zu synthetisieren, reichten klassische Proteinsynthese-Methoden nicht aus, um ihr Ziel zu erreichen, mussten die Forscher ausgeklügelte neue Synthesestrategien entwickeln.
EPO ist eigentlich kein einzelnes Molekül, sondern eine ganze Familie von Glycoproteinen. Es besteht aus einem Proteinteil, der vier Kohlenhydrat-Domänen trägt. Der Protein-Teil ist immer der gleiche, auch die Stellen, an denen die Kohlenhydrat-Domänen hängen, ist konstant. In natürlichem EPO findet man jedoch eine breite Varianz verschiedener Kohlenhydrat-Domänen. Bisher war es nicht möglich, EPO als einheitliches Molekül rein zu gewinnen. Dank ihres vollsynthetischen Ansatzes ist es Danishelfsky und seinen Kollegen nun erstmals gelungen, „Wildtyp“-EPO in Reinform zugänglich zu machen, das die natürliche Aminsäuresequenz aufweist und vier Kohlenhydrat-Domänen mit genau definierter Struktur. Mit dieser Strategie lassen sich viele unterschiedliche Versionen des Moleküls mit verschiedenen Kohlenhydrat-Domänen herstellen und so deren Wirkung bei der Bildung von Blutzellen miteinander vergleichen.
Die Struktur des synthetischen EPO wurde mit massenspektroskopischen Untersuchungen belegt. Versuche mit Stammzellen zeigten zudem die Wirksamkeit des vollsynthetischen EPO: Nicht anders als die natürliche Sorte regt es Stammzellen dazu an, zu roten Blutkörpcherchen zu differenzieren.
Angewandte Chemie: Presseinfo 42/2012
Autor: Samuel J. Danishefsky, Sloan-Kettering Institute for Cancer Research, New York (USA), http://www.mskcc.org/research/lab/samuel-danishefsky
Angewandte Chemie, Permalink to the article: http://dx.doi.org/10.1002/ange.201206090
Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.
Media Contact
Weitere Informationen:
http://presse.angewandte.de/Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Menschen vs Maschinen – Wer ist besser in der Spracherkennung?
Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…
Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung
Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…
Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme
Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…