Molekulare Motoren beeinflussen die Zellteilung zu unterschiedlich großen Tochterzellen

Fragmente des Spindelapparats (links) nach dem Aufsplitten des Zentrosoms mit einem Laser. Die aus Mikrotubuli gebildeten Astern (rot) werden sichtbar gemacht, indem man fluoreszierende Antikörper an das Protein Tubulin anhängt. Die DNS ist blau gefärbt. Der Pfeil zeigt die Stelle an, an der das Zentrosom mit einem Laser zerteilt wurde. <br> <br>Foto: Max-Planck-Institut für molekulare Zellbiologie und Genetik <br>

Max-Planck-Forscher weisen erstmals nach, wie ungleich verteilte molekulare Motoren die Zellteilung beeinflussen und zu unterschiedlich großen Tochterzellen führen

Die Gesetze der Physik und Chemie gelten auch in Zellen, den Bausteinen des Lebens. Molekularbiologen versuchen deshalb herauszufinden, welche Zusammenhänge zwischen den Eigenschaften einzelner Moleküle und dem Leben und Verhalten einzelner Zellen oder ganzer Organismen bestehen. So teilen sich Stammzellen häufig nicht symmetrisch, sondern in eine kleine und eine große Tochterzelle. Tritt das so ein, waren Kräfte am Werk, die den so genannten Spindelapparat zuvor in eine exzentrische Position gebracht haben. Wissenschaftlern des Max-Planck-Instituts für molekulare Zellbiologie und Genetik und des European Molecular Biology Laboratory (EMBL) in Heidelberg ist es jetzt erstmals gelungen, die physikalischen Kräfte zu vermessen, die dieser Zellteilung zugrunde liegen und die daran beteiligten Proteine zu zählen. Danach kommt es zu einem Kräfteungleichgewicht, da der Spindelapparat auf der einen Seite von weniger Motoren gezogen wird als auf der anderen. Asymmetrische Zellteilung ist von fundamentaler Bedeutung für die Ausdifferenzierung verschiedener Zelltypen und damit für die Entwicklung eines Organismus. Eine genaue Kenntnis solcher mechanischen Abläufe verbessert unser Verständnis der Vorgänge, die in Zellen ablaufen und sie am Leben halten oder krank machen.

Leben beruht wesentlich auf der Vermehrung von Zellen, der Zellteilung, auch Mitose genannt. Die Zellen durchlaufen dabei eine regelmäßige Abfolge von Zuständen, die sich von Generation zu Generation wiederholen. Ein korrekter Ablauf der Zellteilung ist entscheidend für das gesunde Überleben eines jeden Organismus. Eine wichtige Rolle spielt dabei der Spindelapparat: eine bipolare, sternförmige Struktur, die durch ZWEI die Zentrosomen organisiert wird, von denen nach allen Seiten der Zellwand Faserstrukturen ausstrahlen. Doch zugleich ist der Spindelapparat eine molekulare Maschine, die das Genom bei der Zellteilung mit beeindruckender Präzision auf die Tochterzellen verteilt.

Die Mitose wird schon seit den frühen 1880er Jahren untersucht, so dass wir heute ein detailliertes, wenn auch immer noch unvollständiges Bild von der Dynamik und Mechanik der Spindel haben, ein Gefühl für ihre Antriebs- und Regulationsmechanismen und eine lange Liste beteiligter Proteine. Noch aber sind wesentliche Fragen der Mitose unverstanden, darunter, durch welche Kräfte und Mechanismen die Spindel in der Zelle bewegt und genauestens positioniert wird. Teilt sich eine Zelle, so geschieht das nicht immer als ein Aufsplitten in zwei gleiche Hälften. Vielmehr sind ungleich große Tochterzellen als Ergebnis einer Zellteilung häufig gerade die Vorbedingung dafür, damit sich während der Entwicklung vom Ei zum Organismus unterschiedliche Zelltypen herausbilden können. So ist es ein großer Unterschied, ob sich eine Ausgangszelle zu einer Leber- oder einer Hirnzelle entwickeln soll.

Bekannt ist heute: Bei einer ungleichen Zellteilung befindet sich der Spindelapparat also jene filigrane Struktur, die bei der Mitose die Chromosomen voneinander trennt im Moment kurz vor der Aufspaltung nicht mehr im Zellmittelpunkt. Vielmehr verlagern sich die beiden Zellpole, und der Zelläquator gerät gleichsam in eine Schieflage. Die entstehende Teilungsfurche zweiteilt dann die „verrutschte“ Spindel und als Ergebnis entstehen zwei Tochterzellen ungleicher Größe. Die Frage ist also, durch welche Kräfte die beiden Pole und damit die Teilungsspindel in der Zelle verschoben werden. Um das herauszufinden, haben Forscher des Max-Planck-Instituts für molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden und des EMBL in Heidelberg die Kräfteverteilung an den beiden Spindelpolen und den ihnen zugeordneten „Astern“, also den aus Mikrotubuli gebildeten sternförmigen Faserstrukturen, genauestens unter die Lupe genommen.

Die Wissenschaftler um Jonathon Howard, Tony Hyman und Stephan Grill arbeiteten dazu an einzelligen Embryonen des Fadenwurms Caenorhabditis elegans. Es gelang ihnen, die räumliche Anordnung der Kräfte, die von den sternförmigen Mikrotubuli auf die Spindelpole ausgeübt werden, mit einem Trick genauestens zu messen. Dazu verwendeten die Wissenschaftler ein spezielles Verfahren, das so genannte OICD (optically induced centrosome disintegration): Bei dieser Prozedur wird schlichtweg das Zentrosom mit einem UV-Laser „zerschossen“, so dass die unter starker Spannung stehenden Faserstrukturen Richtung Zellwand auseinander schnellen (in der Abb. links). Den Forschern gelang es, die Geschwindigkeiten der einzelnen Mikrotubuli-Fragmente exakt zu messen. Eine weitergehende statistische Auswertung der Varianz von Fragmentgeschwindigkeiten erlaubte biophysikalische Schlussfolgerungen: Danach entsteht das Kräfteungleichgewicht dadurch, dass auf der einen Seite der Spindel mehr molekulare Motoren (konkret etwa 25) an den Mikrotubuli ziehen als an der anderen Seite (nur etwa 15). Dadurch kommt es zu der erwähnten „Schieflage“ und anschließenden asymmetrischen Teilung.

Mit molekularbiologischen Methoden fanden die Forscher zudem heraus, dass bei diesem Vorgang die so genannte alpha-Einheit der G-Proteine (G-alpha) eine entscheidende Rolle spielt: Schaltet man G-alpha aus, wirken keinerlei Kräfte mehr auf die Spindel. G-alpha ist also wesentlich für die Aktivierung der Motoren verantwortlich, die dann Zellteilungsspindel aus der Mitte zeihen und damit eine ungleiche Zellteilung bewirken. „Die Zellteilung ist ein sehr komplizierter Prozess, der entweder zu identischen oder sehr ungleichen Tochterzellen führt,“ meint Stephan Grill, Erstautor der neuen Studie, „wenn wir erst einmal die genauen Zahlen und Daten der beteiligten Proteine haben, können wir unsere mathematischen Modelle fein justieren und dazu benutzen, die exakte Funktion verschiedener andere Moleküle, die an diesem Prozess beteiligt sind, zu untersuchen.“

Weitere Informationen erhalten Sie von:

Stephan W. Grill
Max-Planck-Institut für molekulare Zellbiologie und Genetik, Dresden
Tel.: 0351 – 210-2542, Fax.: -1409
E-Mail: grill@mpi-cbg.de

Media Contact

Stephan W. Grill Max-Planck-Gesellschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Hochleistungsfähiger Ceriumoxid-Thermoschalter für effiziente Wärmeregelung und nachhaltige Energiesysteme.

Langlebig, Effizient, Nachhaltig: Der Aufstieg von Ceriumoxid-Thermoschaltern

Bahnbrechende Thermoschalter auf Basis von Ceriumoxid erreichen bemerkenswerte Leistungen und revolutionieren die Steuerung des Wärmeflusses mit nachhaltiger und effizienter Technologie. Ceriumoxid-Thermoschalter revolutionieren die Steuerung des Wärmeflusses Thermoschalter, die den Wärmeübergang…

Industrielle Roboter senken CO₂-Emissionen in der Fertigung für nachhaltigen Welthandel.

Wie industrielle Roboter Emissionen in der globalen Fertigung reduzieren

Eine neue Studie untersucht die Schnittstelle zwischen industrieller Automatisierung und ökologischer Nachhaltigkeit, wobei der Schwerpunkt auf der Rolle industrieller Roboter bei der Reduzierung der Kohlenstoffintensität von Exporten aus der Fertigung…

3D-gedruckte Biokeramische Transplantate für personalisierte kraniomaxillofaziale Knochenrekonstruktion.

Patienten können durch präzise, personalisierte Biokeramische Transplantate heilen

Eine kürzlich veröffentlichte Übersichtsarbeit revolutioniert die Landschaft der craniomaxillofazialen Knochenregeneration durch die Einführung personalisierter biokeramischer Transplantate. Diese bahnbrechende Forschung untersucht die Herstellung und das klinische Potenzial synthetischer Transplantate, die mittels…