Lasertechnik ermöglicht 3D-Zellforschung

Das Verhalten von Zellen hängt stark von der Umgebung ab, in der sie sich befinden. Um Zellen zu untersuchen und zu beeinflussen ist es daher höchst wertvoll, sie in eine maßgeschneiderte Umgebung einbauen zu können.

Aleksandr Ovsianikov entwickelt ein Laser-gesteuertes Verfahren, mit dem man Zellen gezielt in feine Strukturen einweben kann – ähnlich wie in natürlichem biologischen Gewebe, wo sie von der sogenannten „extrazellulären Matrix“ umgeben sind. Wichtig ist das für die Züchtung von neuem Gewebe, für die Suche nach neuen Medikamenten oder für die Stammzellenforschung. Für dieses Projekt erhielt Ovsianikov nun einen ERC-Grant des European Research Council (ERC), der mit knapp 1,5 Millionen Euro dotiert ist.

High-Tech-Strukturen für die biomedizinische Forschung

„Zellen auf einer ebenen Fläche anzusiedeln, ist nicht schwer. Doch solche Zellkulturen benehmen sich anders als Zellen in einer dreidimensionalen Struktur“, erklärt Alexandr Ovsianikov. Im Gegensatz zur klassischen 2D Zell-Kultur in der Petrischale gibt es zur Zeit keine Standards für 3D-Systeme. Eine solche 3D-Struktur muss durchlässig sein, damit die Zellen mit allen notwendigen Stoffen versorgt werden können. Die Geometrie und die chemischen oder mechanischen Eigenschaften der Struktur sollen präzise angepasst werden können, um die Reaktion der Zellen auf die äußeren Bedingungen studieren zu können. Außerdem soll die 3D-Struktur rasch in großer Anzahl herstellbar sein, denn um verlässliche Ergebnisse zu erzielen muss man Experimente an Zellen oft an vielen Zellkulturen gleichzeitig durchführen.

Genau diese Anforderungen kann die Forschungsgruppe „Additive Manufacturing Technologies“ der TU Wien bestens erfüllen: Das interdisziplinäre Team entwickelt seit Jahren spezielle Fertigungstechniken, mit denen sich dreidimensionale Strukturen mit einer Präzision im Mikrometer-Bereich herstellen lassen.

Laser verhärtet Flüssigkeit

Zu Beginn schwimmen die Zellen in einer Flüssigkeit, die hauptsächlich aus Wasser besteht. Beigemischt sind zellverträgliche Moleküle, die auf eine ganz bestimmte Weise mit Licht reagieren: Ein fokussierter Laserstrahl lässt genau an den gewünschten Stellen chemische Doppelbindungen brechen. Eine chemische Kettenreaktion führt dann dazu, dass sich die Moleküle zu einem Polymer verbinden.

Um diese Reaktion auszulösen, müssen zwei Photonen des Laserlichts gleichzeitig absorbiert werden. Nur dort, wo das Laserlicht fokussiert ist, gibt es ausreichend viele Photonen für diesen Prozess. Material außerhalb dieses Bereichs wird dadurch nicht beeinflusst. „Dadurch können wir mit extrem hoher Präzision bestimmen, an welchen Stellen sich die Moleküle verkleben sollen und ein festes Netzwerk bilden“, erklärt Ovsianikov.

Indem man den Fokus des Laserstrahls gezielt durch die Flüssigkeit lenkt, entsteht eine feste Struktur, in der die lebenden Zellen von Anfang an eingebaut sind. Die übrigen Moleküle, die nicht zu Polymeren verklebt wurden, können danach einfach weggewaschen werden. So kann man eine Struktur aus Hydrogelen bauen, ähnlich der extrazellulären Matrix, die unsere eigenen Zellen im lebenden Gewebe umgibt. Ideen aus der Natur werden im Labor imitiert und technologisch nutzbar gemacht: Diese Taktik – die Biomimetik – ist gerade in der Materialwissenschaft heute sehr gefragt. „Diese Technologie könnte in bestimmten Fällen auch Tierversuche unnötig machen, und dabei viel schnellere und aussagekräftigere Ergebnisse liefern“, hofft Ovsianikov.

Hoffnungsgebiet Stammzellenforschung

Ein besonders spannendes Anwendungsgebiet ist die Stammzellenforschung: „Wir wissen heute, dass sich Stammzellen je nach Umgebung zu unterschiedlichen Gewebetypen weiterentwickeln können“, sagt Aleksandr Ovsianikov. „So entwickeln sie sich etwa auf festerem Untergrund zu Knochenzellen, auf weicherem Untergrund zu Nervenzellen.“ In der Laser-generierten 3D-Struktur kann man die Steifigkeit des Untergrundes von Anfang an genau bestimmen und so möglicherweise ganz gezielt unterschiedliche Gewebetypen hervorbringen.

Litauen, Deutschland, Österreich

Entscheidend ist bei diesem Forschungsprojekt die Interdisziplinarität des Teams, zwischen Maschinenbau, Materialforschung, Biologie und Chemie. Die Möglichkeit, mit Expertenteams aus so unterschiedlichen Forschungsrichtungen unter einem Dach arbeiten zu können, war für Aleksandr Ovsianikov auch ein wichtiger Grund, nach Wien zu kommen. Seit zwei Jahren forscht der gebürtige Litauer nun an der TU Wien, vorher war er an der Universität Hannover beschäftigt, wo er auch seine Dissertation verfasste.

Hochdotierte Auszeichnung des Europäischen Forschungsrates

Das Forschungsprojekt von Alsksandr Ovsianikov wurde vom Europäischen Forschungsrat (European Research Council, ERC) nun mit einem „ERC Starting Grant“ ausgezeichnet. Dieser hochdotierte Förderpreis wird an aufstrebende junge Forscherinnen und Forscher vergeben, die damit auf ihrem Weg zu akademischen Führungspositionen unterstützt werden sollen. Durch den ERC-Grant soll Ovsianikov nun in den nächsten fünf Jahren die Möglichkeit bekommen, rund um sich ein Forschungsteam aufzubauen und auf eine wissenschaftliche Abenteuerreise zwischen Materialwissenschaft und Zellbiologie zu gehen.

Rückfragehinweise:
Dr. Aleksandr Ovsianikov
Institut für Werkstoffwissenschaft und Werkstofftechnologie
Technische Universität Wien
Favoritenstr. 9-11, 1040 Wien
T: +43-1-58801-30830
aleksandr.ovsianikov@tuwien.ac.at

Media Contact

Dr. Florian Aigner idw

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bismut-Antimon-Kristalle zur Demonstration topologischer Thermoelektrik unter einem schwachen Magnetfeld.

Magnetischer Effekt: Bahnbrechende Entdeckung für die thermoelektrische Kühlung bei niedrigen Temperaturen

Forschende am Max-Planck-Institut für Chemische Physik fester Stoffe haben in Zusammenarbeit mit der Chongqing University und dem Max-Planck-Institut für Mikrostrukturphysik einen Durchbruch im Bereich topologischer Thermoelektrika erzielt. In ihrer in…

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…