Auf Biegen und Kühlen: Mit Formgedächtnis zum Kühlschrank von morgen
Sie nutzen dabei das so genannte Formgedächtnis von Nickel-Titan-Blechen: Die Legierung ist sehr elastisch, sie „erinnert“ sich an ihre ursprüngliche Form, nimmt diese also wieder an, wenn sie verformt wird.
Hierbei wandelt sich die Gitterstruktur des Materials um, Spannungen entstehen: Diese so genannten Phasenumwandlungen erwärmen das Blech, wenn es belastet wird, kühlen es wieder ab, wenn es entlastet wird. Den Effekt wollen die Wissenschaftler zur Kühlung einsetzen.
Sie arbeiten gemeinsam daran, die Materialien und Prozesse besser zu verstehen, zu optimieren, und sie in einem Demonstrator anwendbar zu machen.Das Projekt ist Teil des Schwerpunktprogramms „Ferroic Cooling“ 1599 der Deutschen Forschungsgemeinschaft.
Ob heimischer Kühlschrank oder Industrie-Kühlhaus – Kühlgeräte sind Stromfresser. Sie verursachen dadurch nicht nur immense Kosten, sondern tragen ihren Teil dazu bei, dass große Mengen Kohlendioxid in die Atmosphäre gelangen. Eine Forschergruppe aus Saarbrücken und Bochum will sich mit Blechen aus Nickel-Titan, kurz „NiTi“ genannt, der Aufgabe stellen, neuartige Kühlmethoden zu entwickeln: Sie sollen weniger Energie verbrauchen als herkömmliche Kühlgeräte und vor allem ohne die heute üblichen klimaschädigenden Kältemittel auskommen.
Kühlschränke kühlen, weil ihrem Inneren Wärme entzogen und diese nach außen abgegeben wird. Um Wärme aus dem Kühlschrank heraus zu transportieren, wollen die Professoren Andreas Schütze und Stefan Seelecke von der Saar-Uni gemeinsam mit Professor Gunther Eggeler und Dr. Jan Frenzel von der Ruhr-Universität Bochum das Formgedächtnis der „NiTi-Legierung“ nutzen: Im Gegensatz zu gewöhnlichen Metallen wie Stahl erwärmt sich ein Nickel-Titan-Blech um bis zu 30 Grad über der Umgebungstemperatur, wenn es mechanisch verformt, gebogen oder gezogen wird.
Wird diese Wärme an die Umgebung abgegeben, kühlt sich das Blech, wenn es anschließend wieder entlastet wird, um etwa 20 Grad unter Umgebungsniveau ab. Diesen Effekt wollen die Forscher nutzen, um dem Kühlschrankinneren Wärme zu entziehen und diese dann nach außen abzugeben. Derzeit ist die erste Demo-Version noch recht groß, weil noch eine größere Kraft nötig ist, um das Blech zu ziehen. Zukünftig wollen die Forscher kleinere Lösungen entwickeln, zum Beispiel mit so genannten Piezo-Aktoren: Diese kleinen Antriebe können große Kräfte auf kleinen Wegen ausüben.
Die Saarbrücker Messtechniker und Aktorik-Experten testen nun, wie dieser Kühlmechanismus am effizientesten abläuft, wie er am wenigsten Energie verbraucht und wie er ingenieurtechnisch gestaltet werden muss, damit er funktional und in der Praxis umsetzbar wird. Dabei wird unter anderem an verschiedenen Methoden gearbeitet, wie der Wärmetransport aus dem Kühlschrankinneren optimiert werden kann. Experimente werden durchgeführt, Simulationsmodelle und Testmethoden entwickelt, mit Hilfe derer etwa vorhergesagt werden kann, wie stark das Blech verformt werden muss, um welche Kühlleistung zu erreichen, oder welche Zeit dies in Anspruch nimmt. Mit einer Thermokamera soll hierzu untersucht werden, wie die Erwärmung und Abkühlung abläuft.
In Bochum wird analysiert, wie der Werkstoff, die Nickel-Titan-Legierung, idealerweise für diesen Prozess beschaffen sein muss. Ziel ist es, die Legierung mit den idealen Kühleigenschaften zu finden, die der hohen Belastung bei ständiger Verformung standhält.
In der ersten dreijährigen Projektphase sollen zunächst mithilfe eines Modellsystems die einzelnen Abläufe genau erforscht und verschiedene Prozessführungen erprobt werden. In der zweiten Phase des Schwerpunktprogramms soll dann ein erster funktioneller „Kühldemonstrator“ realisiert werden.
Beteiligt sind von Seiten der Universität des Saarlandes die Lehrstühle für Unkonventionelle Aktorik (Professor Stefan Seelecke) und für Messtechnik (Professor Andreas Schütze) sowie von der Ruhr-Universität Bochum der Lehrstuhl Werkstoffwissenschaft (Professor Gunther Eggeler/Dr. Jan Frenzel).
Die Forschung ist Teil des DFG-Schwerpunktprogramms 1599 „Caloric effects in ferroic materials: New concepts for cooling” (Koordinator: Dr. Sebastian Fähler vom Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden – IFW e.V.). http://www.ferroiccooling.de
Kontakt:
Universität des Saarlandes
Prof. Dr.-Ing. Stefan Seelecke: Tel.: 0681 302 71341; E-Mail: stefan.seelecke@mmsl.uni-saarland.de
Prof. Dr. Andreas Schütze: Tel.: 0681 302 4663; E-Mail: schuetze@LMT.uni-saarland.de
Ruhr-Universität Bochum
Prof. Dr. Gunther Eggeler: Tel. 0234 32 23022; E-Mail: gunther.eggeler@rub.de
Dr. Jan Frenzel: Tel. 0234 32 22547; E-Mail: jan.a.frenzel@rub.de
Hinweis für Hörfunk-Journalisten: Sie können Telefoninterviews in Studioqualität mit Wissenschaftlern der Universität des Saarlandes führen, über Rundfunk-Codec (IP-Verbindung). Interviewwünsche bitte an die Pressestelle (0681/302-2601) richten.
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…