CeBIT 2014: DFKI zeigt ersten Affenroboter mit beweglicher Wirbelsäule und fühlenden Füßen

Der biologisch inspirierte Roboter "Charlie" kann sich dank seiner flexiblen Wirbelsäule sicher in unebenem Gelände bewegen. Foto: DFKI GmbH/Daniel Kühn

„iStruct – intelligent Structures for Mobile Robots“ heißt das Projekt, in dem DFKI-Wissenschaftler gemeinsam mit Forschern der Universität Bremen den Roboter entwickelt haben. Mensch und Schimpanse dienten als Vorbild.

„Charlie“ soll sich sicher und flexibel in unebenem Gelände bewegen können, z. B. bei der Erkundung von Mondkratern auf der Suche nach Wassereis. Das Vorhaben wurde vom Bundeswirtschaftsministerium über die Raumfahrtagentur des Deutschen Zentrums für Luft- und Raumfahrt (DLR) mit 3,3 Mio. Euro in einer Laufzeit von drei Jahren gefördert.

Bislang sind rad- oder kettengetriebene robotische Fahrzeuge beim Einsatz auf fremden Planeten energieeffizienter und leichter zu kontrollieren. Laufende Robotersysteme bieten jedoch Zugang zu schwer zugänglichem Terrain. Mit ihren Beinen und Füßen können sie gezielt Kräfte auf bestimmte Punkte aufbringen, sich so – ohne das Gleichgewicht zu verlieren – fortbewegen und Kräfte optimal einsetzen und verteilen. Damit lässt sich beispielsweise ein steiler Mondkrater herabklettern. Darüber hinaus können die Gliedmaßen für tastende und greifende Aufgaben verwendet werden.

Die Wirbelsäule und die Füße mit sich an die Bodenstruktur anpassenden Sohlen haben das Potenzial, die Mobilität des Roboters im Vergleich zu klassischen Systemen zu verbessern. In einer vierbeinigen Pose hat er einen stabileren Stand, der sich beispielsweise zur Erkundung von unebenem und unstrukturiertem Gelände besser eignet. In der zweibeinigen Pose sind erweiterte Einsatzmöglichkeiten denkbar, wie z. B. die Nutzung der vorderen Extremitäten für zusätzliche Aufgaben oder Tätigkeiten.

Ein interessanter Forschungsaspekt ist es, die Übertragbarkeit von Bewegungsmustern von Vier- auf Zweibeiner oder umgekehrt zu untersuchen. Dienen bestimmte Bewegungssequenzen aus der vierbeinigen Fortbewegung auch dem zweibeinigen Laufen in direkter oder abgewandelter Form? „Antworten darauf könnten Hinweise auf Prozesse geben, die in der Evolution des zweibeinigen Laufens stattgefunden haben“, sagt Prof. Dr. Frank Kirchner, Direktor des Robotics Innovation Center am DFKI und Leiter der Arbeitsgruppe Robotik der Universität Bremen. 

Im Detail: Wirbelsäule macht Roboter wendig

wirken trotz einer guten Einzelgelenkregelung schwerfällig und hölzern. Häufig liegt dies an einer starren Konstruktion, die mittig im Roboter angebracht ist und als Korpus dient. Abgehend davon sind in den Gliedmaßen die jeweiligen Antriebseinheiten aufgehängt.

Das vereinfacht zwar den Aufbau und reduziert die Komplexität des Roboters, aber es beschränkt die Bewegungsfreiheit und verringert die Möglichkeiten, den Kraftfluss im Roboter gezielt von den Hinterbeinen in eine Vorwärtsbewegung umzusetzen.Forscher Daniel Kühn.

Das hat zur Folge, dass auch neue Ansätze der Kraftfluss-Optimierung zur Steuerung des Roboters entwickelt werden müssen. Um die Funktionsweise der Wirbelsäule von komplexen biologischen Systemen wie Mensch oder Affe auf ein technisches System zu übertragen, analysierten die Forscher das Zusammenspiel von Knochen, Muskeln und Sehnen.

Ein weiteres, essenzielles Subsystem des Roboters ist der Fuß, der für eine effektive Fortbewegung, gute Bodenhaftung und einen robusten Stand sorgt. Hierfür wurde der entwickelte Unterschenkel mit einem aktiven Sprunggelenk und einem adaptiven Sensorfuß ausgestattet.

Über das DFKI Robotics Innovation Center

Das Robotics Innovation Center zählt zum Bremer Standort des Deutschen Forschungszentrums für Künstliche Intelligenz GmbH (DFKI). Hier und in der Außenstelle an der Universität Osnabrück entwickeln Wissenschaftlerinnen und Wissenschaftler unter Leitung von Prof. Dr. Frank Kirchner mobile Robotersysteme, die an Land, zu Wasser, in der Luft und im Weltraum für komplexe Aufgaben eingesetzt werden. Das erfordert sowohl ein Design nach neuesten Erkenntnissen der Mechatronik als auch eine Programmierung auf Basis komplexer, massiv-paralleler eingebetteter Systemlösungen. Das DFKI mit Sitz in Kaiserslautern, Saarbrücken und Bremen sowie dem Projektbüro in Berlin ist das weltweit größte Forschungszentrum auf dem Gebiet der Künstlichen Intelligenz. www.dfki.de/robotik

Bildmaterial
Unter ftp://ftp.dfki.de/OUTGOING/iStruct stehen Bilder zum Download bereit. Diese können Sie mit Nennung der Quelle „DFKI GmbH“ gerne verwenden.

Videos finden Sie in der Mediathek unter www.dfki.de/robotik, Projekt „iStruct“.

Ansprechpartner:

Prof. Dr. Frank Kirchner
Direktor DFKI Robotics Innovation Center
E-Mail: frank.kirchner[at]dfki.de
Tel.: 0421 178 45 4100

Dipl.-Inf. Daniel Kühn
Projektleiter iStruct
E-Mail: daniel.kuehn[at]dfki.de
Tel. 0421 178 45 4109

Pressekontakt:
Team Unternehmenskommunikation Bremen
Daniela Menzel
E-Mail: uk-hb[at]dfki.de
Tel.: 0421 178 45 4180

Pressekontakt auf der CeBIT:
Team Unternehmenskommunikation
Heike Leonhard
Tel. 0174 3076888

ftp://ftp.dfki.de/OUTGOING/iStruct – Bildmaterial
http://www.dfki.de/robotik – Videos und weitere Informationen

Media Contact

Daniela Menzel idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: CeBIT 2014

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…