Die Synapse im Nanometermaßstab: erste Beobachtung einer neuen Dynamik

Ein Team von Forschern der Ecole Normale Supérieure in Paris hat in seiner letzten Veröffentlichung eine Anwendung der Nanotechnologie im medizinischen und biologischen Bereich bewiesen, die dank halbleitender Nanopartikel („Quantum Dots“) die bisher genaueste Visualisierung der Dynamik von neuronalen Rezeptoren ermöglicht.

Die Synapse ist das Verbindungselement, an dem sich die Kommunikation zwischen zwei Neuronen vollzieht. Diese Kommunikation wird durch Membranrezeptoren der „Zielzelle“ ermöglicht. Die Rezeptoren (Proteine) erkennen die chemischen Signale, die von den Nervenenden der emittierenden Neuronen gesandt werden. Diese chemischen Signale werden dann in elektrische Signale umgewandelt. Die Signale werden in Echtzeit sortiert und integriert und tragen zur Übertragung der Nerveninformation bei.

Bisher wurde angenommen, dass die Synapse stabil bleibt, das heißt, dass sich die Zahl und die Eigenschaften der anwesenden Rezeptoren normalerweise kaum veränderten. Änderungen treten nur unter bestimmten Bedingungen auf, wie zum Beispiel beim Lernprozess.

Die Forscher konnten nun das Gegenteil beweisen. Die Synapse ist tatsächlich im dynamischen Gleichgewicht, und die Rezeptoren ändern kontinuierlich ihre Lokalisierung. Ihre Verteilung ändert sich ebenfalls sehr schnell, mit spezifischer Kinetik, die davon abhängt, ob sie sich in der Nähe und außerhalb der Synapse oder innerhalb der Synapse befinden. Um zu diesem Ergebnis zu kommen, haben die Forscher Spitzentechnik genutzt: halbleitende Nanokristalle (Quantum Dots). Diese Nanopartikel haben einen von Zinksulfid umgegebenen Kern aus Cadmiumselenid. Die Größe der Nanopartikel beträgt zwischen 5 bis 10 Nanometer (ein Nanometer entspricht einem Milliardstel Meter). Sie haben bemerkenswerte optische Fluoreszenzeigenschaften. Nachdem sie zu einem Rezeptor zusammengebunden werden, können die Nanopartikel Licht emittieren. Auf diese Weise lassen sich dieses kleine optische Signal und die Bewegung des Rezeptors 10-20 Minuten oder länger beobachten, was bisher nicht möglich war. Das ist ein Vorteil gegenüber den fluoreszierenden Molekülen, die nur einige Sekunden funktionieren.

Diese neuen Erkenntnisse sind für die theoretische Basis der Pharmakologie der neuronalen Rezeptoren von großer Bedeutung, da die Dichte der Rezeptoren gewisse Eigenschaften des Glycinrezeptor bestimmen. Letztendlich wäre diese Arbeit ohne die enge Zusammenarbeit von Biologen und Physikern nicht möglich gewesen und ist somit ein schönes Beispiel interdisziplinärer Forschung.

Media Contact

Antoine Triller Wissenschaft-Frankreich

Weitere Informationen:

http://www.ens.fr

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…