Antibiotika – Wie Bakterien Widerstand leisten

Multiresistente Bakterien, bei denen Antibiotika keine Wirkung mehr zeigen, sind in der Medizin ein immer größeres Problem. Manche Bakterien besitzen von Natur aus Resistenzgene, andere erwerben sie durch Mutationen oder den Austausch mit anderen Bakterien.

Um Resistenzen zu verhindern und möglicherweise neue, wirksame Antibiotika zu entwickeln, ist es wichtig, die Mechanismen der Resistenzbildung zu verstehen. Für das Antibiotikum Erythromycin, das zu den sogenannten Makrolidantibiotika gehört, erzielte der LMU-Biochemiker Daniel Wilson dabei nun einen entscheidenden Fortschritt: Dem Wissenschaftler gelang es mit seinem Team zum ersten Mal, Einblick in die Mechanismen zu erhalten, wie Resistenzgene gegen Erythromycin aktiviert werden.

Strukturelle Veränderungen initiieren Resistenzbildung

Wie die meisten Antibiotika dockt auch Erythromycin an den bakteriellen Ribosomen an, den Proteinfabriken im Inneren der Erreger. Dort verhindert es die Herstellung neuer Proteine, die für das Überleben und die Vermehrung der Krankheitserreger notwendig sind. Einer der Hauptwege, wie es zur Resistenzbildung kommt, ist eine Veränderung der ribosomalen RNA: Durch das Andocken von Erythromycin an das Ribosom werden Resistenzgene aktiviert, die die Übertragung von zwei zusätzlichen Methylgruppen auf die ribosomale RNA initiieren. „Diese strukturelle Veränderung erschwert dann die Bindung von Erythromycin an das Ribosom und hemmt damit seine Wirksamkeit“, sagt Wilson.

„Die für die Resistenzbildung notwendigen Enzyme werden aber nur produziert, wenn sie auch benötigt werden. Eine Schlüsselrolle spielt dabei das Signalpeptid ErmBL“, sagt Wilson. Die genetische Information zur Produktion neuer Proteine wird aus dem Zellkern von dem Botenmolekül mRNA in das Ribosom übermittelt, wo anhand dieser Vorlage Proteine synthetisiert werden. Verrät das Signalpeptid die Anwesenheit von Erythromycin, hält das Ribosom die Herstellung des Signalpeptids ErmBL zunächst an. Dieser Stopp ermöglicht der mRNA die Ausbildung einer neuen Struktur. Dadurch werden die ansonsten unzugänglichen Resistenzgene für die Zellmaschinerie erreichbar und können aktiviert werden.

„Die strukturellen Grundlagen dieses Stopps der Proteinsynthese waren bisher völlig unbekannt“, sagt Wilson. „Wir konnten nun mithilfe der Kryo-Elektronenmikroskopie erstmals ein durch Signalpeptid und Antibiotikum gestopptes Ribosom abbilden. Dies ermöglicht uns einen strukturellen Einblick in die Mechanismen, wie die Resistenzbildung induziert wird“, sagt Wilson.

Antibiotikum lenkt Signalpeptid um

Dabei zeigte sich zur Überraschung der Wissenschaftler, dass das Signalpeptid ErmBL und Erythromycin nicht direkt miteinander interagieren. Stattdessen scheint die Anwesenheit von Erythromycin die Eiweißkette, aus der das Signalpeptid besteht, im Inneren des Ribosoms umzuleiten. Dabei nimmt ErmBL eine spezielle Struktur an, die das aktive Zentrum des Ribosoms hemmt.

„Diese Erkenntnisse könnten zukünftig helfen, bessere Makrolidantibiotika zu entwickeln“, ist Wilson überzeugt. „Zuerst müssen wir aber die Mechanismen im Ribosom noch besser verstehen“. Als ersten Schritt auf diesem Weg arbeiten die Wissenschaftler nun daran, die Auflösung der kryoelektronenmikroskopischen Aufnahmen zu verbessern und auch andere durch Wirkstoffe gestoppte Ribosomen zu untersuchen.
Nature Communications 2014
göd

Publikation:
Molecular basis for erythromycin-dependent ribosome stalling during translation of the ErmBL leader peptide
Stefan Arenz, Haripriya Ramu, Pulkit Gupta, Otto Berninghausen, Roland Beckmann, Nora Vázquez-Laslop, Alexander S. Mankin & Daniel N. Wilson
Nature Communications 2014
Doi: 10.1038/ncomms4501

Kontakt:
Dr. Daniel Wilson
Genzentrum der LMU
Phone: (+49) 89-2180-76903
Fax: (+49) 89-2180-76945
Email: wilson@genzentrum.lmu.de
http://www.wilson.genzentrum.lmu.de/

Media Contact

Luise Dirscherl idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…