Pflanzenzellen halten sich mit chemischen Cocktails gesund
Kölner Max-Planck-Forscher entdecken chemisches Waffenarsenal im Immunsystem von Pflanzen
Tiere und Pflanzen verfügen über ein hochentwickeltes Immunsystem, das es ihnen ermöglicht, die meisten Angriffe krankheitserregender Mikroorganismen wie Viren, Bakterien und Pilze erfolgreich abzuwehren. Von Pflanzen wusste man bisher, dass ihre Zellen die von Krankheitserregern während eines Angriffs freigesetzten Fremdmoleküle durch Rezeptoren an ihrer Oberfläche und im Zellinneren erkennen können. Dieser Mechanismus des Immunsystems hat aber nur für einen Bruchteil der potentiellen Erreger maßgebliche Bedeutung. Oft ist er mit der Aktivierung des programmierten Zelltods in den angegriffenen Zellen verbunden, so dass dem Angreifer mit dem Absterben der infizierten Zellen der Nährboden entzogen wird. Eine Forschergruppe um Paul Schulze-Lefert am Kölner Max-Planck-Institut hat nun in Arabidopsis-Pflanzen eine weitere, bislang verborgene „vorgeschobene Verteidigungslinie“ entdeckt, welche für die Abwehr der meisten Pflanzenschädlinge verantwortlich ist. Wie die Wissenschaftler in der neuesten Ausgabe des Wissenschaftsmagazins „Nature“ (Nature, 30. Oktober 2003) berichten, ist diese Verteidigungslinie der hochspezifischen Abwehr vorgeschaltet und beruht auf einer Gruppe so genannter SNARE-Proteine. Diese Proteine steuern wie ein Leitsystem den Transport und die gezielte Ausschüttung von „chemischen Kampfstoffen“, die pilzliche Keime bereits beim Eindringen in die Pflanzenzelle abtöten.
Die Kölner Forscher hatten Experimente mit der Ackerschmalwand Arabidopsis thaliana durchgeführt und die Pflanze mit einem Mehltaupilz infiziert, der normalerweise nur Gräser befällt und zu schweren Schäden bei Gerste führt. Die Ackerschmalwand wird von dieser Mehltauart in der Regel nicht befallen. Den Wissenschaftlern gelang es jedoch, seltene Mutanten der Ackerschmalwand zu finden, die auch durch den Gerstemehltau infiziert werden können. In der Zellmembran dieser Pflanzen haben die Wissenschaftler jetzt bisher unbekannte SNARE-Proteine nachgewiesen. Diese fungieren dort als „Andockstelle“ (target-SNARE, von engl. target =Ziel) für giftbeladene Vesikel, in deren Membranhülle ein passendes Gegenstück sitzt (vesicle-SNARE). Bei den Mutanten liegt offenbar ein Defekt in dem Gen für diese target-SNARE-Proteine vor. Infolgedessen sind die Vesikel nicht mehr in der Lage, mit der Zellmembran zu verschmelzen und ihre giftige Fracht gezielt freizusetzen. Folge ist, dass der eindringende Pilz seinen Angriff durch die Zellwand ungehindert fortsetzen kann.
Das Prinzip des von SNARE-Proteinen gesteuerten Vesikeltransports kennt man bereits aus Signalprozessen von Mensch und Tieren, bei denen Vesikel mit unterschiedlichen Membranen verschmelzen. Nach diesem Prinzip werden auch die Botenstoffe (Neurotransmitter) an den Nervenendigungen zielgenau an ihrem Bestimmungsort ausgeschüttet.
Interessanterweise konnten die Kölner Wissenschaftler diese SNARE-Proteine sowohl in Gerste als auch in der Ackerschmalwand nachweisen. Damit wurde deutlich, dass es sich bei diesem Verteidigungsmechanismus um ein evolutionär sehr altes System handeln muss, denn beide Spezies haben sich bereits vor etwa 200 Millionen Jahren getrennt. Die Wissenschaftler vermuten, dass das Immunsystem von Pflanzen erst durch das Zusammenspiel zwischen dieser neu entdeckten, breit wirksamen „ersten Verteidigungslinie“ und dem nachgeschalteten hochspezifischen Rezeptorsystem jene Effizienz erreicht, um Infektionsversuche der meisten Schadpilze scheitern zu lassen.
Der Angriff von Pilzen, die oft mit Hilfe von Zellwand-abbauenden Enzymen versuchen, in eine Pflanzenzelle einzudringen, wird von der angegriffenen Zelle rasch registriert: Daraufhin bilden sich innerhalb kürzester Zeit in ihrem Inneren spezialisierte Transportbehälter, die mit einem chemischen Giftcocktail beladen werden. Zielgenau wird die verpackte Giftfracht mit Hilfe der SNARE-Proteine an die Zellwand, zur Eintrittstelle des Pilzes, gesteuert und dort nach außen entladen. Die Pflanzenzelle übersteht den Angriff unbeschadet, während der Angreifer die Flut der chemischen Kampfstoffe in der Regel nicht überlebt.
Bei einem Vergleich stellten die Forscher fest, dass die Aminosäuresequenzen der target-SNARE-Proteine von Gerste und Ackerschmalwand sehr ähnlich sind. Hingegen ist die über die Vesikel vermittelten Abwehr der Gerste gegen den Gerstemehltaupilz stark vermindert. Vermutlich hat also der Mehltau bei der Gerste Wege gefunden, entweder den Vesikeltransport zu unterdrücken oder die Giftfracht zu entschärfen.
Die Molekulargenetiker vom Kölner Max-Planck-Institut wollen als nächstes der Frage nachgehen, welche Komponenten des Zellskeletts als Gleitschienen für den gerichteten Vesikeltransport dienen. Außerdem gehen sie davon aus, dass Pflanzenzellen in ihrer Plasmamembran über mechanische Stress-Sensoren verfügen, die bei einem Angriff die Synthese und den Transport der Verteidigungsvesikel auslösen. Schließlich bleibt die genaue chemische Zusammensetzung des Giftcocktails zu klären. Interessanterweise scheint dessen Zusammensetzung von Pflanzenart zu Pflanzenart unterschiedlich zu sein. So könnte auf der Grundlage desselben Grundmusters, also eines gerichteten Vesikeltransports, eine enorme Vielfalt an chemischen Waffen erzeugt werden. Pflanzen dürften daher in ihrem Kampf gegen Krankheitserreger eine Fülle chemischer Kampfstoffe hervorgebracht haben.
Originalveröffentlichung:
Nicholas C. Collins, Hans Thordal-Christensen, Volker Lipka, Stephan Bau, Erich Kombrink, Jin-Long Qiu, Ralph Hückelhoven, Mónica Stein, Andreas Freialdenhoven, Shauna C. Somerville, and Paul Schulze-Lefert
SNARE protein mediated disease resistance at the plant cell wall
Nature, 30 October 2003
Weitere Informationen erhalten Sie von:
Prof. Dr. Paul Schulze-Lefert
Max-Planck-Institut für Züchtungsforschung, Köln
Tel.: 0221 5062-351
Fax: 0221 5062-353
E-Mail: schlef@mpiz-koeln.mpg.de
Dr. Volker Lipka
Max-Planck-Institut für Züchtungsforschung, Köln
Tel.: 0221 5062-308
Fax: 0221 5062-353
E-Mail: lipka@mpiz-koeln.mpg.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…