Komplizierte Familienbande – Neue Erkenntnisse zur Evolutionsgeschichte der Bären
Möglich wäre dies gewesen, weil früher die Beringiabrücke die Verbreitungsgebiete dieser Arten miteinander verband. Das Team hatte für die großangelegte Studie Teile des Erbguts aller heute noch existierenden Bärenarten verglichen. Die Ergebnisse wurden vor kurzem im Fachjournal Molecular Biology and Evolution veröffentlicht.
Ob aus Naturdokumentationen oder dem Zoo – jeder kennt Braunbären, Eisbären und Pandas. Es gibt jedoch etliche weitere Bärenarten in Asien und Südamerika, die weniger bekannt sind, zum Beispiel den Lippenbär, den Kragenbär oder den Brillenbär. Trotz langjähriger Forschung sind die genauen Verwandtschaftsverhältnisse zwischen den insgesamt acht heute weltweit noch vorkommenden Bärenarten nach wie vor unklar.
Wer mit wem? Eisbär und Braunbär machen es vor
Bisherige Untersuchungen des Erbgutes der Eis- und Braunbären haben ergeben, dass sich die beiden Arten während ihrer langen Evolutionsgeschichte gekreuzt haben. Beobachtungen zeigen, dass sie dies auch heute wieder tun – die aktuellen Klimaveränderungen machen es möglich. Die Vermutung liegt nahe, dass auf ähnliche Weise auch zwischen anderen Arten der Bärenfamilie Genmaterial ausgetauscht wurde.
Auch Braun- und Schwarzbären haben sich gekreuzt
Ein Team des Frankfurter LOEWE Biodiversität und Klima Forschungszentrums (BiK-F) und der Goethe Universität hat nun zusammen mit amerikanischen Kollegen Teile des Genoms aller heute vorkommenden Bärenarten verglichen. „Wir konnten zeigen, dass sich mehrere Bärenarten während ihrer Entwicklungsgeschichte über die Artgrenzen hinweg gepaart haben. Dadurch wurde genetisches Material ausgetauscht, was im Erbgut der heutigen Bären zu erkennen ist“, erklärt die Leitautorin der Studie, Verena Kutschera, BiK-F. Diese Vermischung erschwert die evolutive Zuordnung einiger Genabschnitte zu einer bestimmten Art.
Beringiabrücke als interkontinentaler Singletreff
Erstaunlicherweise haben sich offensichtlich auch Bärenarten miteinander gekreuzt, die heute weit entfernt voneinander auf unterschiedlichen Kontinenten leben. Das war möglich, weil der während früherer Eiszeitalter deutlich abgesenkte Meeresspiegel eine Landverbindung zwischen Asien und Nordamerika freigab, die Beringiabrücke. Vorfahren der heute noch vorkommenden Bärenarten, z.B. des Asiatischen Kragenbären und der Amerikanischen Schwarzbären, hatten so die Möglichkeit, sich zu begegnen und zu paaren.
Klassischer Stammbaum stellt Familienverhältnisse unzureichend dar
Alle heute noch vorkommenden acht Bärenarten haben sich gut an ihren jeweiligen heutigen Lebensraum angepasst und unterscheiden sich äußerlich sehr – man denke nur an Eisbären und Schwarzbären. Nichtsdestotrotz ist die Artbildung auf der Ebene einzelner Gene noch nicht vollständig abgeschlossen. Dies erschwert zusätzlich die Erforschung ihrer Evolution.
Außerdem werden mittels moderner Methoden immer häufiger Abschnitte in Genomen von Säugetieren gefunden, die von anderen Arten stammen könnten. Dem Anschein nach getrennte Erblinien „verschmelzen“ somit offenbar immer wieder und tauschen Genmaterial aus. „Die klassische Stammbaumdarstellung, wie sie schon Darwin verwendete, ist deshalb nicht immer geeignet, um die Evolutionsgeschichte vollständig abzubilden. Sogenannte phylogenetische Netzwerke, die eher einer Netzstruktur gleichen, stellen die von uns gefundenen genetischen Vermischungen viel besser dar“, so der Evolutionsbiologe Prof. Axel Janke, Leiter des Forschungsteams. Damit zeigt die Studie, dass Evolution oft nicht linear verläuft – und viele neue Ansätze, ihre komplexen Prozesse zu verstehen, erst durch die heutigen molekulargenetischen Methoden möglich werden.
Publikation:
Kutschera, V. et al. Bears in a forest of gene trees: Phylogenetic inference is complicated by incomplete lineage sortign and gene flow – Molecular Biology and Evolution, DOI: 10.1093/molbev/msu186
Für weitere Informationen kontaktieren Sie bitte:
Prof. Dr. Axel Janke
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F)
Tel. +49 (0)69 7542 1842
axel.janke@senckenberg.de
oder
Verena Kutschera
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F)
Tel. +49 (0)69 7542 1828
verena.kutschera@senckenberg.de
oder
Sabine Wendler
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F),
Pressereferentin
Tel. +49 (0)69 7542 1838
Sabine.wendler@senckenberg.de
LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
Mit dem Ziel, anhand eines breit angelegten Methodenspektrums die komplexen Wech-selwirkungen von Biodiversität und Klima zu entschlüsseln, wird das Biodiversität und Klima Forschungszentrum (BiK‐F) seit 2008 im Rahmen der hessischen Landes‐Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz (LOEWE) gefördert. Die Senckenberg Gesellschaft für Naturforschung und die Goethe Universität Frankfurt sowie weitere direkt eingebundene Partner kooperieren eng mit regionalen, nationalen und internationalen Akteuren aus Wissenschaft, Ressourcen‐ und Umweltmanagement, um Projektionen für die Zukunft zu entwickeln und wissenschaftlich gesicherte Empfehlungen für ein nachhaltiges Handeln zu geben. Mehr unter www.bik‐f.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…