Der Hexcrete-Turm – mit Sechsecken in luftige Höhen
Oberhalb von 100 Metern weht der Wind stark und gleichmäßig. Windenergieanlagen mit höheren Turbinentürmen könnten davon profitieren und mehr Betriebsstunden erreichen – eine bessere „Windernte“ in den Regionen Europa und der USA, in denen oberhalb von 100 Metern günstige Windbedingungen herrschen und die einen hohen Bedarf an Strom haben.
Corporate Technology (CT US) arbeitet mit der Iowa State University daran, ein neues Konzept für höhere Windturbinentürme nutzbar zu machen – den so genannten Hexcrete-Turm.
Im Projekt „Hexcrete Tower for Harvesting Wind Energy at Taller Hub Heights“ soll mit einer neuen Turmkonstruktion und einem neuen Fertigungskonzept Windenergie in 120 bis 140 Metern Nabenhöhe genutzt und die Stromgestehungskosten in den USA gesenkt werden. Corporate Technology in den USA ist für die Analyse und Optimierung der Turmkonstruktionen verantwortlich, die im Rahmen des Projekts entwickelt werden.
„Die Hersteller von Windkraftanlagen wollen schon seit Langem ‚höher hinaus‘, da das Windangebot in größerer Höhe gleichmäßiger und zuverlässiger ist. Das Projekt hat ganz klar das Potenzial, diese Vision wahr werden zu lassen“, sagt Kurt Bettenhausen, Leiter des Technologiefelds Automation & Control bei Corporate Technology (CT) in den USA.
Heute dominieren Türme aus Stahlrohren
Windparks für die Stromversorgung in den USA werden heute von Stahlrohrtürmen mit einer Nabenhöhe von 80 Metern dominiert. Die Türme werden in drei langen Segmenten gefertigt und transportiert und liegen mit einem Fußdurchmesser von circa 4,1 Metern knapp unter der Brückendurchfahrtshöhe auf Landstraßen.
Wären die heute üblichen Türme um 20 bis 60 Meter höher, hätte dies einen höheren Energieertrag zur Folge. Das würde die Erzeugung von Energie aus Windkraft auch an Standorten wirtschaftlich rentabel machen, an denen dies momentan nicht der Fall ist.
Allerdings verursachen der Zusammenbau der Stahlrohre vor Ort und die vertikalen Nähte hohe Kosten und sie erfordern eine besondere Qualitätskontrolle. Hinzu kommt, dass die Stahlrohrtürme heute über weite Strecken transportiert werden müssen. Das ist weder effizient noch mit dem Umweltanspruch erneuerbarer Energien zu vereinbaren.
Beton statt Stahl
Professor Sri Sritharan von der Iowa State University arbeitet mit einem Team von CT US unter der Leitung von Suraj Musuvathy an der Realisierung höherer Windenergieanlagen. „Unser Schlüssel ist: wir verwenden Beton statt Stahl“, sagt Sritharan. Er arbeitet an der Entwicklung eines Turms aus vorgefertigten Betonteilen, die sich bis zur gewünschten Nabenhöhe aufeinandersetzen lassen.
Namensgeber für den Hexcrete-Turm ist das Sechseck – die sechseckigen Betonsäulen, die nachträglich verspannt werden, und die sechseckige Turmsektion. Der gesamte Turm wird aus vorgefertigten Säulen und Platten aus Hochleistungs- bzw. aus Ultrahochleistungsbeton zusammengebaut.
Das CT-Team erarbeitet zusammen mit der Division Wind Power and Renewables Algorithmen für die 3D-Modellierung, Simulation und Optimierung. Mit diesen Algorithmen werden die Entwurfsalternativen des modularen Konzepts durchgespielt und die optimalen Konstruktionsparameter ermittelt, die sowohl eine Minimierung der Stromgestehungskosten ermöglichen als auch die bautechnischen und Konstruktionskriterien erfüllen.
Flexibler durch Module
Die Modulbauweise führt zu mehr Flexibilität beim Bau und Transport der Türme. Da sich ein modulares System aus Betonteilen per Sattelschlepper transportieren ließe, könnte auf die teuren Spezialfahrzeuge, die heute beim Transport der Stahltürme zum Einsatz kommen, verzichtet werden. Auch die weiteren Einschränkungen und Straßensperrungen, die heute mit höheren Türmen verbunden sind, könnten dann der Vergangenheit angehören.
Die Modulbauweise mit Betonfertigteilen lässt beim Turmfuß auch einen Durchmesser von mehr als 4,1 Metern zu, sodass auch noch höhere Türme errichtet werden könnten. Größere Turmhöhen lassen sich nicht nur mit einer größeren Grundfläche sondern auch mit größeren Säulen- und Plattenmaßen oder entsprechenden Kombinationen erreichen. Und schließlich ist Beton im Gegensatz zu Stahl in den USA fast überall verfügbar. Das bedeutet kürzere Transportwege und damit geringere Kosten.
Das von der Iowa State University geleitete Hexcrete-Projekt wurde von der Abteilung Energy Efficiency & Renewable Energy des Department of Energy in den USA mit einer Million Dollar gefördert.
Natasha Azar
Redaktion
Sebastian Webel
Dr. Norbert Aschenbrenner
Dr. Johannes von Karczewski
Kontakt für Journalisten
Florian Martini
Tel.: +49 (89) 636-33446
Media Contact
Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik
Dieser Fachbereich umfasst die Erzeugung, Übertragung und Umformung von Energie, die Effizienz von Energieerzeugung, Energieumwandlung, Energietransport und letztlich die Energienutzung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Windenergie, Brennstoffzellen, Sonnenenergie, Erdwärme, Erdöl, Gas, Atomtechnik, Alternative Energie, Energieeinsparung, Fusionstechnologie, Wasserstofftechnik und Supraleittechnik.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…