Transistoren im Terahertz-Takt beeinflussen
Transistoren lassen sich nicht nur mit Spannungen beeinflussen
Transistoren sind wesentliche Elemente der modernen Elektronik, die zum Schalten und Verstärken genutzt werden. Legt man von außen eine bestimmte Spannung an einen Transistor an, steuert das in seinem Inneren einen Strom, der wiederum eine neue Spannung ergibt.
Verglichen mit der außen angelegten Spannung kann die neue Spannung verstärkt sein, oszillieren oder logisch mit ihr verknüpft sein. Um über Strom und Spannung mit der Umgebung interagieren zu können, beinhalten Transistoren extrem dünne Elektronenschichten, sogenannte 2D-Elektronengase. Das RUB-Team zeigte, dass diese sich nicht nur durch Gleich- oder Radiofrequenzspannungen steuern lassen.
Elektronengas kann wie Wackelpudding zum Schwingen gebracht werden
„Ein 2D-Elektronengas ist wie ein Wackelpudding“, erklärt Prof. Dr. Andreas Wieck vom Lehrstuhl für Angewandte Festkörperphysik. „Drückt man mit einer charakteristischen Frequenz elektrisch von oben auf das Gas, entstehen Dicke- und Dichteschwingungen.“
Das Gas lässt sich also auch über elektrische Kräfte beeinflussen, die weit schneller variieren als jede Radio- oder Mikrowellenfrequenz. Da es gerade einmal zehn Nanometer dick ist, gehorchen die Schwingungen den Gesetzen der Quantenmechanik. Das bedeutet: Es können nur Schwingungen mit bestimmten Frequenzen entstehen, und zwar im Terahertz-Bereich, also im Bereich von 10^12 Hertz.
„Man muss sehr schnell auf das Elektronengas drücken“, veranschaulicht Wieck. Andreas Wieck, Dr. Shovon Pal Dr. Natham Jukam und weitere Kollegen der Arbeitsgruppe Terahertz-Spektroskopie und -Technologie sowie vom Lehrstuhl für Werkstoffe und Nanoelektronik fanden einen Weg, die erforderlichen Schwingungen auszulösen. So ergibt sich ein neuer Zugang zum Inneren eines Transistors.
Resonatoren erzeugen Dickeschwingungen
Die RUB-Forscher dampften 100 Nanometer über dem Elektronengas eine Vielzahl gleichartiger metallischer Resonatoren auf, die mit der erforderlichen festen Frequenz schwingen können. Das Elektronengas befand sich in einem Halbleiter und konnte über eine äußere Gleichspannung verändert werden, nämlich ein wenig dicker oder dünner gemacht werden.
Die Dicke bestimmt die Frequenz, die das Gas optimal zum Schwingen bringt. Über die äußere Spannung konnten die Forscher das Elektronengas auf die Resonatoren abstimmen, das Gas also so einstellen, dass der elektrische Wechseldruck der Resonatoren es optimal zum Schwingen im Terahertz-Bereich anregt.
Sensoren für die Chemie- und Umwelttechnik
Diese Technik könnte für Sensoren in der Chemie- und Umwelttechnik interessant sein, schlagen die Forscher vor. Denn Molekülschwingungen liegen typischerweise im Terahertz-Bereich. Über die modifizierten Transistoren ließen sich solche Schwingungen erfassen und Messfühler entwickeln, die individuell auf die Frequenzen bestimmter Gase oder Flüssigkeiten reagieren.
Förderung
Die Studie wurde finanziell gefördert durch das Bundesministerium für Bildung und Forschung, die Mercator-Stiftung, die Deutsch-Französische Hochschule Nice-Bochum, die RUB Research School, die International Max Planck Research School for Surface and Interface Engineering in Advanced Materials sowie durch die Deutsche Forschungsgemeinschaft.
Titelaufnahme
Pal et al. (2015): Ultrawide electrical tuning of light matter interaction in a high electron mobility transistor structure, Scientific Reports, DOI: 10.1038/srep16812
Weitere Informationen
Prof. Dr. Andreas Wieck, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-26726, E-Mail: andreas.wieck@rub.de
Dr. Shovon Pal, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-21175, E-Mail: shovon.pal@rub.de
Media Contact
Alle Nachrichten aus der Kategorie: Interdisziplinäre Forschung
Aktuelle Meldungen und Entwicklungen aus fächer- und disziplinenübergreifender Forschung.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Mikrosystemforschung, Emotionsforschung, Zukunftsforschung und Stratosphärenforschung.
Neueste Beiträge
Kompaktes LCOS-Mikrodisplay mit schneller CMOS-Backplane
…zur Hochgeschwindigkeits-Lichtmodulation. Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS haben in Zusammenarbeit mit der HOLOEYE Photonics AG ein kompaktes LCOS-Mikrodisplay mit hohen Bildwiederholraten entwickelt, das eine verbesserte optische Modulation ermöglicht….
Neue Perspektiven für die Materialerkennung
SFB MARIE geht in 3. Förderperiode: Großer Erfolg für die Terahertz-Forschung: Wissenschaftler:innen der Universität Duisburg-Essen und der Ruhr-Universität Bochum erforschen die mobile Materialerkennung seit 2016 im Sonderforschungsbereich/Transregio MARIE. Mit 14,8…
Fahrradhelme aus PLA: Sportartikel mit minimiertem CO2-Fußabdruck
Design, Lifestyle und Funktionalität sind zentrale Kaufkriterien bei Sportartikeln und Accessoires. Für diesen boomenden Markt werden viele Produkte aus Asien nach Europa eingeführt, die nicht ökologisch nachhaltig sind. Forschende des…