Neuer Ansatzpunkt für Regenerative Diabetes-Therapien
Die Betazellen der Bauchspeicheldrüse produzieren bei steigendem Blutzuckerspiegel das Stoffwechselhormon Insulin, um den Zuckerhaushalt im Gleichgewicht zu halten. Werden sie zerstört oder verlieren ihre Funktion, kann das zu schwerwiegenden Erkrankungen wie Diabetes führen.
Doch nicht alle dieser Zellen sind identisch. „Es ist schon länger bekannt, dass es verschiedene Untergruppen der Betazellen gibt“, erklärt Prof. Heiko Lickert, Direktor des Instituts für Diabetes- und Regenerationsforschung am Helmholtz Zentrum München. „Die molekularen Grundlagen waren bisher aber weitgehend unverstanden.“
Flattop markiert reife Betazellen
In der aktuellen Studie suchten die Wissenschaftler um Lickert nach molekularen Unterscheidungsmöglichkeiten für diese Untergruppen, sogenannte Marker. Dabei geriet ein Molekül besonders in ihren Fokus: das Protein Flattop.* Es lag in etwa 80 Prozent aller Betazellen vor, wie die Wissenschaftler zeigten. Diese Zellen ermittelten den Zuckergehalt ihrer Umgebung und gaben entsprechend viel Insulin ab – verhielten sich also wie reife Betazellen.
Zellen ohne Flattop teilen sich öfter
Umgekehrt beobachtete das Forscherteam, dass Betazellen, in denen kein Flattop messbar war, eine besonders hohe Teilungsrate aufwiesen. „In unserem Versuchsmodell vermehrten sich diese Zellen bis zu vier Mal öfter als die Flattop-positiven“, so Studienleiter Lickert.
Eine Art Vorläuferzellen
Um der Vermutung nachzugehen, dass es sich bei den teilungsaktiven Zellen ohne Flattop um Vorläufer der stoffwechselaktiven Zellen handelt, verwendeten die Wissenschaftler einen genetischen Trick um das Schicksal einzelner Zellen zu verfolgen. Dieses sogenannte lineage tracing** zeigte, dass die teilungsaktiven Reservezellen zu stoffwechselaktiven Zellen heranreifen können. Das war auch der Fall, wenn man sie in eine künstliche dreidimensionale Umgebung einsetzt, vergleichbar mit einem Mini-Organ. Zudem bestätigten genetische Analysen, dass in den Flattop-negativen Zellen vor allem Gene für die Wahrnehmung der Umwelt aktiv waren, während in Zellen mit Flattop vor allem Stoffwechselprogramme abliefen.
„Unsere Ergebnisse lassen darauf schließen, dass es sich bei den Flattop-negativen Zellen um eine Art Reservepool handelt, der sich stetig erneuert und Nachschub für reife Betazellen ausbilden kann“, so Lickert. Durch die nun mögliche Unterscheidung der Zellgruppen, sei nun auch eine saubere Analyse der jeweiligen Signalwege möglich, so der Studienleiter weiter. Gerade mit Blick auf regenerative Therapien, machen die Ergebnisse den Forschern große Hoffnungen: „Die Verschiedenartigkeit der Betazellen wird schon mehr als 50 Jahre lang erforscht, nun scheint es, als ob wir anfangen zu begreifen, wie sich die Zellen verhalten“, so Heiko Lickert.
Perspektivisch ergeben sich laut den Forschern nun vor allem zwei Aspekte: Zum einen erhoffen sie sich für eine Regenerationstherapie, künftig in Patienten mit einem Mangel an funktionellen Betazellen deren Wachstum oder Reifung ankurbeln zu können. Zum anderen könne man versuchen über die von Flattop ‚getriggerten‘ Signalwege die Reifung von Betazellen in der Petrischale zu fördern, was für die Zellersatztherapie bedeutend, bisher aber noch nicht vollends möglich sei.
Weitere Informationen
Hintergrund:
* Flattop ist Bestandteil des sogenannten Wnt Signalweges, der vor allem die Entwicklung von Geweben und die Funktionen von Zellen steuert.
**Lineage tracing ist ein Verfahren zur Verfolgung von Einzelzellschicksalen. Grundalge ist das Einbringen von Genvarianten, die beim Einschalten des jeweiligen Gens ein farbiges Farbsignal von sich geben. In diesem konkreten Fall leuchten Zellen ohne Flattop zunächst rot, sobald Flattop abgelesen wird hingegen grün.
Original-Publikation:
Bader, E. et al. (2016). Identification of proliferative and mature β-cells in the islet of Langerhans, Nature, DOI: 10.1038/nature18624
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature18624.html
Korrespondierende Reviews der Arbeitsgruppe:
Migliorini, A. et al. (2016). Impact of islet architecture on beta cell heterogeneity, plasticity and function, Diabetologia, doi: 10.1007/s00125-016-3949-9
Roscioni, S. et al. (2016). Impact of islet architecture on beta cell heterogeneity, plasticity and function, Nature Reviews Endocrinology, in press
Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören. http://www.helmholtz-muenchen.de
Die Arbeiten des Instituts für Diabetes- und Regenerationsforschung (IDR) konzentrieren sich auf die biologische und physiologische Erforschung der Bauchspeicheldrüse bzw. der Insulin-produzierenden Betazellen. So trägt das IDR zur Aufklärung der Entstehung von Diabetes und der Entdeckung neuer Risikogene der Erkrankung bei. Experten aus den Bereichen Stammzellforschung und Stoffwechselerkrankungen arbeiten gemeinsam an Lösungen für regenerative Therapieansätze des Diabetes. Das IDR ist Teil des Helmholtz Diabetes Center (HDC). http://www.helmholtz-muenchen.de/idr
Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 39.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, ergänzt um Wirtschafts- und Bildungswissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands. http://www.tum.de
Das Deutsche Zentrum für Diabetesforschung e.V. (DZD) ist eines der sechs Deutschen Zentren der Gesundheitsforschung. Es bündelt Experten auf dem Gebiet der Diabetesforschung und verzahnt Grundlagenforschung, Epidemiologie und klinische Anwendung. Ziel des DZD ist es, über einen neuartigen, integrativen Forschungsansatz einen wesentlichen Beitrag zur erfolgreichen, maßgeschneiderten Prävention, Diagnose und Therapie des Diabetes mellitus zu leisten. Mitglieder des Verbunds sind das Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt, das Deutsche Diabetes-Zentrum DDZ in Düsseldorf, das Deutsche Institut für Ernährungsforschung DIfE in Potsdam-Rehbrücke, das Institut für Diabetesforschung und Metabolische Erkrankungen des Helmholtz Zentrum München an der Eberhard-Karls-Universität Tübingen und das Paul-Langerhans-Institut Dresden des Helmholtz Zentrum München am Universitätsklinikum Carl Gustav Carus der TU Dresden, assoziierte Partner an den Universitäten in Heidelberg, Köln, Leipzig, Lübeck und München sowie weitere Projektpartner. http://www.dzd-ev.de
Ansprechpartner für die Medien:
Abteilung Kommunikation, Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg – Tel. +49 89 3187 2238 – Fax: +49 89 3187 3324 – E-Mail: presse@helmholtz-muenchen.de
Fachlicher Ansprechpartner:
Prof. Dr. Heiko Lickert, Helmholtz Zentrum München – Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institut für Diabetes- und Regenerationsforschung, Parkring 11, 85748 Garching – Tel. +49 89 3187 3867, E-Mail: heiko.lickert@helmholtz-muenchen.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…