Hungerndes Schwarzes Loch lässt hell leuchtende Galaxie wieder verblassen

Dieses Bild vom MUSE-Instrument am Very Large Telescope der ESO zeigt die aktive Galaxie Markarian 1018, die ein supermassereiches Schwarzes Loch in ihrem Kern beherbergt. Die lichtschwachen Ringe aus Licht um die Galaxie sind das Ergebnis von Wechselwirkungen und Verschmelzung mit einer anderen Galaxie in jüngster Vergangenheit. Herkunftsnachweis: ESO/CARS survey

Im Zentrum vieler Galaxien findet sich ein supermassereiches Schwarzes Loch, das den Galaxienkern extrem hell leuchten lässt. Solche „Aktiven Galaxien“ werden dadurch zu den hellsten Objekten im Universum. Man geht davon aus, dass heiße Materie, die ins Schwarze Loch hineinfällt, die Ursache für das helle Leuchten ist.

Dieser Prozess wird auch als Akkretion bezeichnet. Das dabei entstehende helle Licht kann bei verschiedenen Aktiven Galaxien sehr unterschiedlich sein, so dass Astronomen sie je nach Eigenschaft des Lichtes, das sie aussenden, in mehrere Typen unterteilen [1].

Manche Galaxien scheinen sich im Laufe von nur 10 Jahren dramatisch verändert zu haben; in astronomischen Größenordnungen ist das mit einem Wimpernschlag vergleichbar. Die Aktive Galaxie Markarian 1018, die in dieser Arbeit untersucht wurde, sticht jedoch besonders hervor, da sie ihren Typ innerhalb der letzten fünf Jahren bereits zum zweiten Mal geändert hat und inzwischen wieder dieselbe Klassifizierung innehat wie zu Beginn. Nur bei einer Handvoll Galaxien wurde solch ein kompletter Veränderungszyklus beobachtet, jedoch wurde keine davon bisher so genau untersucht.

Die Entdeckung der unbeständigen Natur von Markarian 1018 gelang zufällig im Rahmen des Close AGN Reference Survey (CARS), einem Kollaborationsprojekt zwischen der ESO und anderen Organisationen, das zum Ziel hat, Informationen über 40 nahe Galaxien mit Aktiven Kernen zu sammeln. Routine-Beobachtungen von Markarian 1018 mit dem Multi-Unit Spectroscopic Explorer (MUSE), der am Very Large Telescope der ESO installiert ist, brachten die überraschende Veränderung im emittierten Licht der Galaxie zutage.

Wir waren verblüfft, solch eine seltene und dramatische Veränderung in Markarian 1018 zu beobachten”, erzählt Rebecca McElroy, Erstautorin des Fachartikels zur Entdeckung und Doktorandin an der University of Sydney und am ARC Centre of Excellence for All Sky Astrophysics (CAASTRO).

Die zufällige Beobachtung der Galaxie so kurz nachdem sie anfing zu verblassen, war eine unvorhergesehene Möglichkeit etwas darüber zu erfahren, wie Galaxien ticken, erklärt Bernd Husemann, CARS-Projektleiter und Erstautor des zweiten Fachartikels in Zusammenhang mit dieser Entdeckung: „Wir sind froh, dass wir dieses Ereignis nur 3-4 Jahre nach Beginn der Helligkeitsabnahme entdeckt haben, sodass wir mit einer Überwachungskampagne beginnen konnten, um die physikalischen Details der Akkretionsprozesse Aktiver Galaxien zu untersuchen, die ansonsten nicht erforscht werden könnten.

Um aus dieser seltenen Gelegenheit das Beste herauszuholen, hatte es für das Forscher-Team fortan oberste Priorität, genau herauszufinden, welcher Prozess dafür sorgt, dass sich die Helligkeit von Markarian 1018 so plötzlich und stark wieder ändert. Dafür kommen eine Reihe astrophysikalischer Ereignisse in Frage, jedoch konnten sie ausschließen, dass das Schwarze Loch einen einzelnen Stern angezogen und verschluckt hat [2]. Außerdem bezweifelten sie auch die Möglichkeit der Verdunkelung durch Gas, das in die Sichtlinie getreten ist [3]. Der wahre Mechanismus, der für die erstaunliche Veränderung von Markarian 1018 verantwortlich ist, bleibt nach der ersten Beobachtungsrunde weiterhin ein Geheimnis.

Allerdings bekam das Team die Möglichkeit mit dem Hubble-Weltraumteleskop der NASA/ESA und dem Röntgensatelliten Chandra der NASA zusätzliche Daten zu sammeln. Mit den neuen Daten dieser Instrumente konnten sie das Rätsel lösen – das Schwarze Loch verblasste langsam, da ihm die Materie ausging und es demzufolge nichts mehr akkretieren konnte.

Es ist möglich, dass es langsam verhungert, da der Zufluss neuer Materie unterbrochen wurde“, meint Rebecca McElroy. „Eine reizvolle Möglichkeit wäre, dass der Grund dafür Wechselwirkungen mit einem zweiten supermassereichen Schwarzen Loch sind“. Solch ein Doppelsystem aus Schwarzen Löchern ist eine klare Option in Markarian 1018, da die Galaxie das Endprodukt einer Verschmelzung zweier großer Galaxien ist – von denen jede wahrscheinlich ein supermassereiches Schwarzes Loch im Zentrum beherbergt hatte.

Die Erforschung der Mechanismen, die in aktiven Galaxien wie Markarian 1018 am Werk sind und dafür sorgen, dass die Galaxie ihre Erscheinung ändert, gehen weiter. „Das Team musste sich beeilen, den Grund dafür zu finden, warum Markarian 1018 wieder verblasst“, merkt Bernd Husemann an. „Laufende Beobachtungskampagnen mit Teleskopen der ESO und anderen Einrichtungen werden es uns ermöglichen, die aufregende Welt verhungernder Schwarzer Löcher und sich verändernden aktiven Galaxien genauer zu erkunden.

[1] Die hellsten Aktiven Galaxien stellen die Quasare dar, in denen der helle Kern den Rest der Galaxie überscheint. Eine andere, weniger extremere Klasse sind die sogenannten Seyfert-Galaxien. Ursprünglich wurde eine Methode entwickelt, die auf der Helligkeit und dem Emissionsspektrum basierte – die grafische Darstellung der Stärke der emittierten Strahlung bei unterschiedlichen Wellenlängen – um nur zwischen zwei Typen von Seyfert-Galaxien zu unterscheiden, Typ 1 und Typ 2. Jedoch wurden in der Zwischenzeit auch zusätzliche Klassifizierungen eingeführt, wie Typ 1,9.

[2] Wenn ein Stern sich einem supermassereichen Schwarzen Loch zu sehr nähert, wird er durch die extremen gravitativen Gezeitenkräfte auseinandergerissen. Solch ein Ereignis führt zu einer schnellen Helligkeitszunahme im Zentrum, während die Helligkeit anschließend über einen Zeitraum von mehreren Jahren wieder langsam abnimmt.

[3] Verdunkelung durch Gas kann einen Einfluss auf die Klassifizierung einer Aktiven Galaxie haben, indem es das Licht zwischen Beobachter und dem hellen Kern der Galaxie blockiert, vergleichbar mit Nebel vor den Scheinwerfern eines Autos, und so das Licht verdunkelt, dass durchdringen kann. Dies beeinflusst auch das Spektrum der Galaxie, wodurch sich möglicherweise auch ihre Klassifizierung ändert.

Die hier vorgestellten Ergebnisse sind Inhalt der Fachartikel „Mrk 1018 returns to the shadows after 30 years as a Seyfert 1” und  „What is causing Mrk 1018’s return to the shadows after 30 years?”, die demnächst als Kurzartikel in der Zeitschrift Astronomy & Astrophysics erscheinen.

Die beteiligten Wissenschaftler sind B. Husemann (ESO, Garching), T. Urrutia (Leibniz-Institut für Astrophysik Potsdam), G. R. Tremblay (Yale Center for Astronomy and Astrophysics, New Haven, USA), M. Krumpe (Leibniz-Institut für Astrophysik Potsdam), J. Dexter (Max-Planck-Institut für extraterrestrische Physik, Garching), V. N. Bennert (Physics Department, California Polytechnic State University, USA), G. Busch (I. Physikalisches Institut, Universität zu Köln), F. Combes (LERMA, Observatoire de Paris, Frankreich), S. M. Croom (Sydney Institute for Astronomy, Sydney, Australien & ARC Centre of Excellence for All-sky Astrophysics), T. A. Davis (School of Physics & Astronomy, Cardiff University, Großbritannien), A. Eckart (I. Physikalisches Institut Universität zu Köln; Max-Planck-Institut für Radioastronomie, Bonn), R. E. McElroy (Sydney Institute for Astronomy, Sydney, Australien & ARC Centre of Excellence for All-sky Astrophysics), M. Pérez-Torres (Instituto de Astrofísica de Andalucía, Granada, Spanien), M. Powell (Yale Center for Astronomy and Astrophysics, New Haven, USA) und J. Scharwächter (Gemini Observatory, Northern Operations Center, Hawaii, USA).

Die Europäische Südsternwarte (engl. European Southern Observatory, kurz ESO) ist die führende europäische Organisation für astronomische Forschung und das wissenschaftlich produktivste Observatorium der Welt. Getragen wird die Organisation durch 16 Länder: Belgien, Brasilien, Dänemark, Deutschland, Finnland, Frankreich, Großbritannien, Italien, die Niederlande, Österreich, Polen, Portugal, Spanien, Schweden, die Schweiz und die Tschechische Republik. Die ESO ermöglicht astronomische Spitzenforschung, indem sie leistungsfähige bodengebundene Teleskope entwirft, konstruiert und betreibt. Auch bei der Förderung internationaler Zusammenarbeit auf dem Gebiet der Astronomie spielt die Organisation eine maßgebliche Rolle. Die ESO verfügt über drei weltweit einzigartige Beobachtungsstandorte in Chile: La Silla, Paranal und Chajnantor. Auf dem Paranal betreibt die ESO mit dem Very Large Telescope (VLT) das weltweit leistungsfähigste Observatorium für Beobachtungen im Bereich des sichtbaren Lichts und zwei Teleskope für Himmelsdurchmusterungen: VISTA, das größte Durchmusterungsteleskop der Welt, arbeitet im Infraroten, während das VLT Survey Telescope (VST) für Himmelsdurchmusterungen ausschließlich im sichtbaren Licht konzipiert ist. Die ESO ist einer der Hauptpartner bei ALMA, dem größten astronomischen Projekt überhaupt. Auf dem Cerro Armazones unweit des Paranal errichtet die ESO zur Zeit das European Extremely Large Telescope (E-ELT) mit 39 Metern Durchmesser, das einmal das größte optische Teleskop der Welt werden wird.

Die Übersetzungen von englischsprachigen ESO-Pressemitteilungen sind ein Service des ESO Science Outreach Network (ESON), eines internationalen Netzwerks für astronomische Öffentlichkeitsarbeit, in dem Wissenschaftler und Wissenschaftskommunikatoren aus allen ESO-Mitgliedsländern (und einigen weiteren Staaten) vertreten sind. Deutscher Knoten des Netzwerks ist das Haus der Astronomie in Heidelberg.

Carolin Liefke
ESO Science Outreach Network – Haus der Astronomie
Heidelberg, Deutschland
Tel: 06221 528 226
E-Mail: eson-germany@eso.org

Bernd Husemann
European Southern Observatory
Garching bei München, Germany
Tel: +49 89 3200 6750
E-Mail: bhuseman@eso.org

Rebecca McElroy
University of Sydney
Sydney, Australia
Tel: +61 421 882 513
E-Mail: rebecca.mcelroy@sydney.edu.au

Richard Hook
ESO Public Information Officer
Garching bei München, Germany
Tel: +49 89 3200 6655
Mobil: +49 151 1537 3591
E-Mail: rhook@eso.org

Connect with ESO on social media

Dies ist eine Übersetzung der ESO-Pressemitteilung eso1631.

Media Contact

Dr. Carolin Liefke ESO-Media-Newsletter

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…