Kleinstmagnete für zukünftige Datenspeicher

Die Magnetisierung von Dysprosium-Atomen (grün) auf der Nanopartikel-Oberfläche kann genau zwei Richtungen annehmen: «Spin up» oder «Spin down». ETH Zürich / Université de Rennes

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären Digitaltechnik eine Null oder eine Eins) bloss ein einziges Atom oder ein kleines Molekül bräuchte.

Theoretisch ist dies möglich, denn bestimmte Atome lassen sich so magnetisieren, dass die Magnetisierung nur zwei Richtungen annehmen kann: «Spin up» oder «Spin down». In der Abfolge der Magnetisierungsrichtung vieler Moleküle liessen sich so Informationen speichern.

Auf dem Weg zu Einzelmolekülmagnet-Datenspeichern gibt es allerdings noch einige Hürden zu überwinden. Moleküle zu finden, die die magnetische Information nicht nur kurzfristig, sondern auch dauerhaft speichern, ist nicht einfach.

Und noch schwieriger ist es, solche Moleküle für den Bau von Datenspeichern auf einer festen Unterlage anzuordnen. Für letzteres hat ein internationales Forscherteam unter Leitung von Chemikern der ETH Zürich nun eine neue Methode geschaffen. Gegenüber anderen Ansätzen bietet sie zahlreiche Vorteile.

Atom mit Oberfläche verschmolzen

Christophe Copéret, Professor am Laboratorium für Anorganische Chemie der ETH Zürich, und sein Team entwickelten ein Molekül, in dessen Zentrum ein Dysprosium-Atom sitzt (Dysprosium ist ein Metall, das zu den seltenen Erden gehört). Umgeben ist dieses Atom von einem Molekülgerüst, das als Transportvehikel dient.

Ausserdem entwickelten die Wissenschaftler eine Methode, um die Moleküle auf der Oberfläche von Siliziumdioxid-Nanopartikeln zu deponieren und mit diesen bei 400 Grad Celsius zu fusionieren. Das Transportgerüst zerfällt dabei, und es entstehen Nanopartikel, deren Oberfläche mit einzelnen freistehenden Dysprosium-Atomen durchsetzt ist. Wie Tests ergaben, können diese Atome magnetisiert werden, und sie behalten ihre Magnetisierungsrichtung aufrecht.

Die Magnetisierung funktioniert derzeit nur bei rund minus 270 Grad Celsius (nahe dem absoluten Temperatur-Nullpunkt), und sie hält auch nur maximal etwas mehr als eineinhalb Minuten an. Die Wissenschaftler suchen daher nach Ansätzen, die Magnetisierung auch bei höheren Temperaturen und über längere Zeit stabil zu halten. Und sie sind auf der Suche nach Methoden, die Atome statt mit Nanopartikeln mit einer flachen Unterlage zu fusionieren.

Einfache Herstellung

Zu den Vorteilen der neuen Methode gehört, dass sie denkbar einfach ist. «Dysprosium-bestückte Nanopartikel lassen sich in jedem Chemielabor herstellen. Es braucht dazu weder einen Reinraum noch komplexe Apparaturen», sagt Florian Allouche, Doktorand in Copérets Gruppe. Ausserdem können die magnetisierbaren Nanopartikel bei Raumtemperatur aufbewahrt werden, und sie sind wiederverwendbar.

Alternative Herstellungsmethoden bestehen zum Beispiel darin, eine Fläche mit einzelnen Atomen zu bedampfen. So hergestellte Materialen sind jedoch nur bei sehr tiefen Temperaturen stabil. Oder es können Moleküle mit idealen magnetischen Eigenschaften auf eine Unterlage gebracht werden. Bei diesem Prozess werden die magnetischen Eigenschaften jedoch oft negativ beeinflusst.

Im Rahmen dieses Forschungsprojekts arbeiteten die ETH-Wissenschaftler mit Kollegen an den Universitäten von Lyon und Rennes, am Collège de France in Paris, am Paul-Scherrer-Institut in Villigen und am Berkeley National Laboratory in den USA zusammen.

Literaturhinweis

Allouche F et al.: Magnetic Memory from Site Isolated Dy(III) on Silica Materials. ACS Central Science 2017, doi: 10.1021/acscentsci.7b00035 [http://dx.doi.org/10.1021/acscentsci.7b00035]

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2017/03/kleinstmag…

Media Contact

Hochschulkommunikation Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Darstellung multiferrischer Heterostrukturen für energieeffizientes MRAM mit riesigem magnetoelektrischem Effekt.

Magnetischer Speicher mit energieeffizientem MRAM freigeschaltet

Forscher der Universität Osaka stellen innovative Technologie zur Senkung des Energieverbrauchs moderner Speichervorrichtungen vor. Fortschritt in der Speichertechnologie: Überwindung der Grenzen traditioneller RAM Osaka, Japan – In den letzten Jahren…

Framework zur Automatisierung von RBAC-Konformitätsprüfungen mithilfe von Prozessmodellierung und Richtlinienvalidierungswerkzeugen.

Next-Level System-Sicherheit: Intelligenterer Zugriffsschutz für Organisationen

Fortschrittliches Framework zur Verbesserung der System-Sicherheit Forschende der University of Electro-Communications haben ein bahnbrechendes Framework zur Verbesserung der System-Sicherheit durch die Analyse von Geschäftsprozessprotokollen entwickelt. Dieses Framework konzentriert sich darauf,…

Tiefseesedimentkern zeigt mikrobielle Karbonatbildung an Methanquellen.

Wie mikrobielles Leben die Kalkbildung im tiefen Ozean beeinflusst

Mikroorganismen sind überall und beeinflussen die Umwelt der Erde seit über 3,5 Milliarden Jahren. Forschende aus Deutschland, Österreich und Taiwan haben nun erstmals die Rolle entschlüsselt, die Mikroorganismen bei der…