Heiß und kalt: Molekulares Thermometer für kontaktlose Messungen mit infrarotem Licht

Foto/©: Sven Otto, JGU Molekularer Rubin in fester (rot) und gelöster (gelb) Form kann berührungsfrei die Temperatur messen.

Gemeinsam mit Forschern der Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin haben Chemiker der Johannes Gutenberg-Universität Mainz (JGU) ein molekulares Thermometer entwickelt. Als Inspiration dafür diente der Edelstein Rubin.

Allerdings handelt es sich bei dem Thermometer aus der Gruppe von Prof. Dr. Katja Heinze am Institut für Anorganische Chemie und Analytische Chemie um ein wasserlösliches Molekül und nicht um einen unlöslichen Feststoff wie der bekannte Edelstein.

Dieses Molekül enthält aber wie Rubin das Element Chrom, das ihm die rote Farbe verleiht, und es wird daher auch molekularer Rubin genannt. Der molekulare Rubin kann dank seiner Löslichkeit in vielfältiger Weise zur Temperaturmessung eingesetzt werden: in Flüssigkeiten ebenso wie in Feststoffen, in Nanopartikeln und in Mizellen und damit im Bereich der Materialwissenschaften, der Biologie und der Medizin.

Der Vorgang der Temperaturmessung mit dem molekularen Rubin ist denkbar einfach. Die betreffende Stelle wird mit blauen Licht bestrahlt, der molekulare Rubin absorbiert dieses Licht und sendet daraufhin Infrarotstrahlung in zwei unterschiedlichen Wellenlängen aus. Je nach Temperatur wird die eine oder die andere Wellenlänge intensiver abgestrahlt. Aus dem Intensitätsverhältnis der beiden Infrarotemissionen kann dann die Temperatur bestimmt werden.

„Diese Messung kann jeder vornehmen, der ein einfaches Emissionsspektrometer besitzt“, erläutert Sven Otto, Doktorand aus der Arbeitsgruppe Heinze. „Der molekulare Rubin funktioniert bei 100 Grad Celsius ebenso wie bei minus 63 Grad Celsius, also in einem alltagsrelevanten Bereich“, ergänzt Otto.

Das Prinzip der optischen ratiometrischen Temperaturmessung war bereits zuvor bekannt. Jedoch war es bisher nicht möglich, die Messung mit nur einer einzigen Art eines photoaktiven Zentrums durchzuführen. Bislang waren immer zwei Farbstoffe nötig: ein Farbstoff, dessen Emission von der Temperatur abhängt, und ein weiterer, dessen Emission davon unbeeinflusst ist, als Referenz. Das erschwert die Synthese und die Kalibration erheblich.

„Der molekulare Rubin ist dagegen einfach aus preiswerten Ausgangsstoffen aufgebaut und benötigt keine zusätzliche Referenzverbindung zur Temperaturmessung“, so Heinze. „Er eignet sich, wann immer wir eine Temperatur messen wollen, ohne das Objekt direkt wie mit einem konventionellen Thermometer berühren zu müssen.“

Die Arbeiten wurden in einer Sonderausgabe des Fachjournals „Chemistry – A European Journal“ aus Anlass des 150-jährigen Bestehens der Gesellschaft Deutscher Chemiker (GDCh) mit Beiträgen von Top-Autoren aus Deutschland publiziert.

Gefördert werden diese Forschungsarbeiten durch die Deutsche Forschungsgemeinschaft (DFG), unter anderem im Rahmen der Graduiertenschule Materials Science in Mainz (MAINZ). Die DFG hat vor kurzem auch ein neues Schwerpunktprogramm „Licht-kontrollierte Reaktivität von Metallkomplexen“ bewilligt, das von Katja Heinze koordiniert wird.

Foto:
http://www.uni-mainz.de/bilder_presse/09_anorgchemie_rubin_thermometer.jpg
Molekularer Rubin in fester (rot) und gelöster (gelb) Form kann berührungsfrei die Temperatur messen.
Foto/©: Sven Otto, JGU

Veröffentlichungen:
Sven Otto et al.
Thermo-Chromium: A Contactless Optical Molecular Thermometer
Chemistry, A European Journal, 15. Mai 2017
DOI: 10.1002/chem.201701726

Sven Otto et al.
[Cr(ddpd)2]3+: A Molecular, Water-Soluble, Highly NIR-Emissive Ruby Analogue
Angewandte Chemie International Edition, 12. August 2015
DOI: 10.1002/anie.201504894

Kontakt und weitere Information:
Prof. Dr. Katja Heinze
Institut für Anorganische Chemie und Analytische Chemie
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25886
Fax +49 6131 39-27277
E-Mail: katja.heinze@uni-mainz.de
https://www.ak-heinze.chemie.uni-mainz.de/

Weitere Links:
http://www.bundesgraduiertenschule-gruppe-mainz.uni-mainz.de/
http://onlinelibrary.wiley.com/doi/10.1002/chem.201701726/abstract
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3765/homepage/2111_gdc… (Beitrag in der Sonderausgabe zu 150 Jahre Gesellschaft Deutscher Chemiker)
http://onlinelibrary.wiley.com/doi/10.1002/anie.201504894/abstract
http://www.uni-mainz.de/presse/aktuell/1212_DEU_HTML.php (Pressemitteilung vom 19.04.2017 „Johannes Gutenberg-Universität Mainz koordiniert neues DFG-Schwerpunktprogramm in der Photochemie“)
http://www.uni-mainz.de/presse/63155.php (Pressemitteilung vom 24.11.2014 „Katja Heinze erhält Wissenschaftspreis für intelligente Lebensmittelverpackung mit Frischeanzeige“)

Media Contact

Petra Giegerich idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-mainz.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Darstellung multiferrischer Heterostrukturen für energieeffizientes MRAM mit riesigem magnetoelektrischem Effekt.

Magnetischer Speicher mit energieeffizientem MRAM freigeschaltet

Forscher der Universität Osaka stellen innovative Technologie zur Senkung des Energieverbrauchs moderner Speichervorrichtungen vor. Fortschritt in der Speichertechnologie: Überwindung der Grenzen traditioneller RAM Osaka, Japan – In den letzten Jahren…

Framework zur Automatisierung von RBAC-Konformitätsprüfungen mithilfe von Prozessmodellierung und Richtlinienvalidierungswerkzeugen.

Next-Level System-Sicherheit: Intelligenterer Zugriffsschutz für Organisationen

Fortschrittliches Framework zur Verbesserung der System-Sicherheit Forschende der University of Electro-Communications haben ein bahnbrechendes Framework zur Verbesserung der System-Sicherheit durch die Analyse von Geschäftsprozessprotokollen entwickelt. Dieses Framework konzentriert sich darauf,…

Tiefseesedimentkern zeigt mikrobielle Karbonatbildung an Methanquellen.

Wie mikrobielles Leben die Kalkbildung im tiefen Ozean beeinflusst

Mikroorganismen sind überall und beeinflussen die Umwelt der Erde seit über 3,5 Milliarden Jahren. Forschende aus Deutschland, Österreich und Taiwan haben nun erstmals die Rolle entschlüsselt, die Mikroorganismen bei der…