Form aus dem Vakuum: Tiefziehen von Dünnglas eröffnet neue Anwendungsfelder
Durch das Vakuumtiefziehen lässt sich Dünnglas in komplexe 3D-Geometrien umformen. Dafür wird das flache Glas soweit erhitzt, dass es durch äußere Kräfte verformt werden kann. Ein Vakuum, das zwischen Werkzeug und Glasscheibe erzeugt wird, zieht das Glas dann in die entsprechende Form, die nach der Abkühlung des Glases stabil bleibt. Das vakuumuntertützte Tiefziehen kann so zum Entstehen gänzlich neuer Produkte beitragen, aber auch in der Herstellung bestehender Produkte Kosten sparen.
Vorstrukturiertes Glas erspart aufwändige Beschichtungen
Großes Potenzial für Einsparungen bietet das Verfahren etwa durch die Verwendung vorstrukturierter Flachgläser. Im vakuumunterstützten Umformvorgang bleiben diese Strukturen erhalten und können dem Endprodukt besondere optische und haptische Effekte verleihen, beispielsweise diffraktive Eigenschaften oder Rutschfestigkeit.
Bisher waren solche Strukturierungen nur durch Beschichtungen oder die gezielte Laserbearbeitung jedes einzelnen umgeformten Bauteils möglich. Der Vorteil beim vakuumunterstützten Tiefziehen ist daher, dass selbst sehr dünnes und strukturiertes Glas unterschiedlichster Art schnell und kostengünstig umgeformt werden kann und koststpielige Nachbearbeitungsschritte entfallen. Der Verzicht auf Beschichtungen hat außerdem ökologische Vorteile, da das Recycling erleichtert wird.
Ein zusätzlich angelegter Überdruck kann die Formgebung sogar noch weiter verbessern: Das Vakuum auf der einen und der Überdruck auf der anderen Seite des Glases erlauben im Gegensatz zum herkömmlichen Biegen durch Schwerkraft noch größere Aspektverhältnisse und kleinere Biegeradien bei niedrigeren Umformtemperaturen.
Forschungspartner für die Prozessentwicklung bis hin zum industriellen Einsatz
Das Fraunhofer IPT untersucht die gesamte Prozesskette des vakuumunterstützen Tiefziehens von Dünnglas und sucht nun interessierte Unternehmen für eine Zusammenarbeit in Forschungs- und Entwicklungsprojekten. Der Ansatz des Fraunhofer IPT, Strukturen bereits während des Umformprozesses in das Glas einzubringen und damit weitere Prozessschritte einzusparen, ist bislang weltweit einzigartig und bietet enormes Potenzial für neue Produktentwicklungen. Das Fraunhofer IPT optimiert dafür die gesamte Prozesskette von der Auslegung, dem Design und der Herstellung der Formwerkzeuge über die Simulation der Prozesse mit unterschiedlichen Parametern und die Durchführung systematischer Versuchsreihen bis hin zum industriellen Einsatz des Verfahrens.
Kontakt
Paul-Alexander Vogel M. Sc.
Fraunhofer-Institut für Produktionstechnologie IPT
Steinbachstraße 17
52074 Aachen
Telefon +49 241 8904-549
paul-alexander.vogel@ipt.fraunhofer.de
Diese Pressemitteilung und druckfähiges Bildmaterial finden Sie auch im Internet unter
www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/20170707_form-aus-dem-vakuum-tiefziehen-von-duennglas-eroeffnet-neue-anwendungsfelder.html
http://www.ipt.fraunhofer.de/de/presse/Pressemitteilungen/20170707_form-aus-dem-…
Media Contact
Alle Nachrichten aus der Kategorie: Verfahrenstechnologie
Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.
Neueste Beiträge
Überraschende Erkenntnisse zur Blutbildung
Wissenschaftler:innen der Universitätsmedizin Mainz decken in Kooperation mit Forschenden des Max-Planck-Instituts für molekulare Biomedizin vielversprechende Eigenschaften des Schädelknochenmarks auf: Das Knochenmark im Schädel stellt eine geschützte und dynamisch expandierende Umgebung…
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…