Material löst sich dynamisch statt kontinuierlich

Die Abbildung stellt keine topographische Karte dar, sondern zeigt, wie viel Material sich auflöst. Deutlich zu erkennen sind die so genannten Pulse, die Kraterwellen ähneln. Foto: MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen

Würfelzucker löst sich in Tee oder Kaffee, Karbonat in Meeren und Ozeanen. Bislang haben Forschende vermutet, dass sich solche Kristalle kontinuierlich in Flüssigkeit auflösen. PD Dr. Cornelius Fischer und Prof. Dr. Andreas Lüttge vom MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen haben nun aber einen besonderen Prozess der Materialauflösung entdeckt, der sich auch auf die quantitative Vorhersagbarkeit natürlicher und technischer Prozesse auswirken wird.

Statt in einem kontinuierlichen Prozess lösen sich Kristalle in Pulsen. Ihre Ergebnisse haben sie am 15. Januar in der Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

Wie kristallines Material mit Flüssigkeiten reagiert, ist bestimmend für ganz alltägliche Prozesse in der Natur und in technischen Anwendungen – wie Metalle korrodieren oder Karbonatgestein zersetzt wird sind Beispiele, ebenso auch die Aufnahme von Arzneimittelwirkstoffen im Körper.

Wie lange dauert es zum Beispiel, bis ein Medikament aufgenommen wird und sich der Wirkstoff freisetzt? Bislang, so die Autoren, sei man davon ausgegangen, dass die Reaktionsprodukte beständig von der Kristalloberfläche freigesetzt werden, das entspricht einer kontinuierlichen Auflösung.

„Neue experimentelle und analytische Ergebnisse zeigen aber etwas grundlegend Anderes: Material wird in einer Folge von Reaktionspulsen freigesetzt“, erklärt Dr. Cornelius Fischer, Erstautor der Studie, die am MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen entstanden ist.

Das bedeutet, dass die zeitliche und räumliche Verteilung der Materialfreisetzung grundsätzlich anders funktioniert als bisher angenommen. Interessant wird es, wenn sich solche Pulse der Materialfreisetzung überlagern, denn so könnten völlig neue Porenmuster von Festkörpern entstehen.

Ein Beispiel für eine klassische Anwendung, sagt Fischer, sei die Durchlässigkeit sonst dichter Festkörper, etwa wie Wasser durch Gestein sickert und so neue Wege für die Flüssigkeit schafft und das Gestein insgesamt poröser wird. Das Porenmuster zeigt dann, wie durchlässig das Gestein ist.

Relevant für Sicherheits- und Risikobewertung

Die Forschung der Mineralogen ist zum Beispiel relevant für Risiko- und Sicherheitsabschätzungen, etwa wenn es um die Einlagerung von Gasen oder das Entsorgen von nuklearem Material geht – „immer dann“, verdeutlicht Fischer, „wenn Prognosen für Anwendungen und Prozesse der Flüssigkeit-Festkörper-Reaktionen verbessert werden sollen“.

Ihre jetzt veröffentlichten Ergebnisse stellen die vorherrschende konzeptionelle Ansicht in Frage, dass die Kristallauflösung einfach der umgekehrte Prozess des kontinuierlichen Kristallwachstums ist.

„Solche Pulse wurden für Kristallwachstumsprozesse bislang nicht beobachtet“, sagt Cornelius Fischer. Für ihre Studie haben Andreas Lüttge und Fischer, der inzwischen als Abteilungsleiter an das Institut für Ressourcenökologie am Helmholtz-Zentrum Dresden-Rossendorf gewechselt ist, die Auflösung von Kalzit und Zinkoxid untersucht. Schnell reagierende Kalzitoberflächen bieten oft ein sehr heterogenes Bild.

„Zinkoxid zum Beispiel eignet sich jedoch gut für eine Beobachtung der Oberflächenveränderungen quasi in Zeitlupe“, erklärt Andreas Lüttge. „Als wir zum ersten Mal solche Pulse mit Zinkoxid-Oberflächen entdeckten, war es schwer zu glauben, dass dieses Ergebnis verallgemeinerungsfähig ist. Zu sehr bestimmen die komplexen Reaktionsmuster wie auf Kalzitoberflächen unsere Interpretation. Jetzt sind wir jedoch mit den neuen Ergebnissen in der Lage, solche Muster der Materialfreisetzung besser zu verstehen.“

Modelle müssen weiter verfeinert werden

Ziel der Untersuchungen von Fischer und Lüttge sind Modelle der quantitativen Prognose. Wie schnell und mit welchen räumlichen Mustern ändern sich Festkörperoberflächen und setzen Material frei? Wie entwickelt sich die Durchlässigkeit von festem Material?

Fischer: „In Zukunft werden wir unsere neuen Erkenntnisse in reaktiven Transportmodellen anwenden, um für grundsätzliche und angewandte Fragestellungen eine bessere Vorhersagbarkeit der Materialfreisetzung zu ermöglichen.“

Originalveröffentlichung:
Cornelius Fischer and Andreas Lüttge: Pulsating dissolution of crystalline matter. Proceedings of the National Academy of Sciences 2018,
DOI:10.1073/pnas.1711254115

Kontakt:
Cornelius Fischer
Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institut für Ressourcenökologie
Leiter der Abteilung Reaktiver Transport an der HZDR-Forschungsstelle Leipzig
Telefon: 0351 260-4660
E-Mail: c.fischer@hzdr.de

Andreas Lüttge
MARUM-Zentrum für Marine Umweltwissenschaften, Universität Bremen
E-Mail: aluttge@marum.de

Mehr Informationen:
Ulrike Prange
MARUM Presse- und Öffentlichkeitsarbeit
Telefon: 0421 218 65540
E-Mail: medien@marum.de

MARUM entschlüsselt mit modernsten Methoden und eingebunden in internationale Projekte die Rolle des Ozeans im System Erde – insbesondere im Hinblick auf den globalen Wandel. Es erfasst die Wechselwirkungen zwischen geologischen und biologischen Prozessen im Meer und liefert Beiträge für eine nachhaltige Nutzung der Ozeane. Das MARUM umfasst das DFG-Forschungszentrum und den Exzellenzcluster „Der Ozean im System Erde“.

http://www.marum.de

Media Contact

Ulrike Prange idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Geowissenschaften

Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.

Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lichtmikroskopie: Computermodell ermöglicht bessere Bilder

Neue Deep-Learning-Architektur sorgt für höhere Effizienz. Die Lichtmikroskopie ist ein unverzichtbares Werkzeug zur Untersuchung unterschiedlichster Proben. Details werden dabei erst mit Hilfe der computergestützten Bildverarbeitung sichtbar. Obwohl bereits enorme Fortschritte…

Neue Maßstäbe in der Filtertechnik

Aerosolabscheider „MiniMax“ überzeugt mit herausragender Leistung und Effizienz. Angesichts wachsender gesetzlicher und industrieller Anforderungen ist die Entwicklung effizienter Abgasreinigungstechnologien sehr wichtig. Besonders in technischen Prozessen steigt der Bedarf an innovativen…

SpecPlate: Besserer Standard für die Laboranalytik

Mehr Effizienz, Tempo und Präzision bei Laboranalysen sowie ein drastisch reduzierter Materialverbrauch: Mit der SpecPlate ersetzt das Spin-off PHABIOC aus dem Karlsruher Institut für Technologie (KIT) durch innovatives Design gleich…