Wenn Elektronen Walzer tanzen
Die Identifikation rechts- und linkshändiger Moleküle ist entscheidend für viele Anwendungen in der Chemie und Pharmazie. Ein internationales Forscherteam (CELIA-CNRS/INRS/Max-Born-Institut/SOLEIL) hat nun ein neues originelles und hochempfindliches Verfahren vorgestellt, mit dem sich die Händigkeit von Molekülen um ein Vielfaches besser bestimmen lässt als mit bisherigen Methoden.
Mit Hilfe extrem kurzer Laserpulse bringen die Forscher Elektronen in Molekülen zum Schwingen und können so den Drehsinn der Moleküle bestimmen. Die Forschungsergebnisse sind in „Nature Physics“ erschienen.
Nicht nur beim Menschen ist die Frage wichtig, ob jemand Rechts- oder Linkshänder ist. Je nachdem, mit welcher Hand wir etwas greifen, umschließen unsere Finger ein Objekt im Uhrzeigersinn oder gegen ihn. Auch in der Welt der Moleküle ist die Händigkeit von großer Bedeutung.
Bei Molekülen ist die Eigenschaft, eine bevorzugte Händigkeit zu haben, sogar noch viel wichtiger als beim Menschen: Denn bestimmte Substanzen können je nachdem, ob sie rechts- oder linkshändig vorliegen, entweder giftig oder heilsam sein. Manche Medikamente dürfen deshalb nur entweder links- oder rechtshändige Moleküle enthalten.
Das Problem dabei liegt darin, rechts- und linkshändige Moleküle, die sonst völlig identisch sind, nach ihrem „Chiralität“ genannten Drehsinn zu identifizieren und zu trennen. Denn außer bei Kontakt mit einem anderen chiralen Stoff verhalten sie sich völlig gleich. Ein internationales Forscherteam hat nun ein neues Verfahren entwickelt, mit dem sich die Händigkeit von Molekülen mit extremer Empfindlichkeit bestimmen lässt.
Seit dem 19. Jahrhundert ist bekannt, dass Moleküle in unterschiedlicher Händigkeit vorliegen können. Bekanntestes Beispiel ist das Erbgut, wie etwa menschliche DNA, dessen Struktur einem rechtsdrehenden Korkenzieher entspricht. Zur Bestimmung der Händigkeit nutzt man üblicherweise sogenannte zirkular polarisierte Lichtstrahlen, die entweder rechts- oder linksdrehende elektromagnetische Felder aufweisen – wie ein Korkenzieher entlang der Ausbreitungsachse gewickelt. Dieses chirale Licht wird etwas besser oder schlechter absorbiert, wenn es auf Moleküle mit gleichem oder umgekehrtem Drehsinn trifft. Der Effekt ist jedoch klein, da die Wellenlänge von Licht sehr viel größer ist als die atomaren Abstände in Molekülen. Das Licht „spürt“ den Drehsinn der Moleküle also nur ganz schwach.
Mit der neuen Methode lässt sich das Signal aber enorm verstärken. „Der Trick besteht darin, die Moleküle mit einem sehr kurzen Laserpuls zu bestrahlen“, sagt Prof. Olga Smirnova, Leiterin der Theoriegruppe am Max-Born-Institut. Solch ein Puls ist nur rund eine zehntel billionstel Sekunde lang und überträgt Energie auf die Elektronen im Molekül. Das regt sie für kurze Zeit zu Schwingungen an. Da sich die Elektronen in der rechts- oder linkshändigen Struktur des Moleküls befinden, nimmt auch ihre Schwingung diesen Drehsinn an.
Die Schwingung lässt sich dann mit einem zweiten Laserpuls auslesen. Dieser Puls muss ebenfalls kurz sein, um die Richtung der Elektronenbewegung registrieren zu können. Er hat so viel Energie, dass er die angeregten Elektronen aus dem Molekül herausschlägt. Je nachdem, ob die Elektronen rechts- oder linkshändig orientierte Schwingungen vollführten, fliegen sie dann entweder in Richtung des Laserstrahls aus dem Molekül oder in umgekehrter Richtung.
Bei Experimenten am „Centre for Intense Lasers and Applications“ (CELIA) der Universität Bordeaux konnte auf diese Weise sehr effizient die Händigkeit der Moleküle bestimmt werden, und zwar mit einem 10.000-fach stärkeren Signal als mit der üblicherweise genutzten Methode. Außerdem lassen sich so chirale chemische Reaktionen einleiten und über die Zeit verfolgen. Das Kunststück besteht darin, sehr kurze Laserpulse mit der passenden Frequenz bereitzustellen. Diese Technologie stammt aus der physikalischen Grundlagenforschung und ist erst seit Kurzem verfügbar. Sie könnte sich für andere Bereiche als äußerst hilfreich erweisen, bei denen die Händigkeit von Molekülen eine Rolle spielt, etwa für die chemische und pharmazeutische Forschung.
Da die Identifikation der Händigkeit von Molekülen mit der neuen Methode gelungen ist, denken die Wissenschaftlerinnen und Wissenschaftler bereits darüber nach, auch ein Laser-Trennverfahren für rechts- und linkshändige Moleküle zu entwickeln.
Text: Dirk Eidemüller / Forschungsverbund Berlin e.V.
Originalveröffentlichung:
S. Beaulieu, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Géneaux, A. G. Harvey, F. Légaré, Z. Mašín, L. Nahon, A. F. Ordonez, S. Petit, B. Pons, Y. Mairesse, O. Smirnova and V. Blanchet: Photoexcitation Circular Dichroism in Chiral Molecules, Nature Physics, 19 February 2018 (online), DOI: 10.1038/s41567-017-0038-z
Kontakt PR:
Stéphanie Thibault, Communications Advisor, INRS, stephanie.thibault@inrs.ca, Tel. +1 514 / 499-6612 (Montreal, Kanada)
Anja Wirsing, Pressereferentin, Forschungsverbund Berlin e.V., wirsing@fv-berlin.de, Tel. 030 / 6392-3337
Kontakt Wissenschaft:
Samuel Beaulieu, beaulieus@emt.inrs.ca (Bordeaux, Frankreich)
Olga Smirnova, olga.smirnova@mbi-berlin.de, Tel. 030 / 6392-1340
Gemeinsame Pressemitteilung: Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) im Forschungsverbund Berlin e.V. | Centre for Intense Lasers and Applications (CELIA) / Universität Bordeaux | French National Center for Scientific Research (CNRS) | French Alternative Energies and Atomic Energy Commission (CEA) | L'Institut national de la recherche scientifique (INRS), Kanada | Synchrotron SOLEIL, Frankreich
Media Contact
Weitere Informationen:
http://www.fv-berlin.deAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Krebs entschlüsseln: 40 Jahre Durchbrüche in der genetischen Forschung
Krebs bei Kindern und Jugendlichen ist selten. Dennoch gehören bösartige Erkrankungen in dieser Altersgruppe nach wie vor zu den häufigsten Todesursachen. Überlebende einer Krebserkrankung im Kindes- oder Jugendalter erleiden oftmals…
Bekämpfung von Nierenkrebs durch verbesserte Immuntherapien
Forscher des Hollings Cancer Center der Medical University of South Carolina erhalten den Early Career Scholar Award des Verteidigungsministeriums, um Immuntherapien durch die gezielte Behandlung von resistenten Nierentumoren zu verbessern….
Lassen Sie uns vor dem ersten Getränk nachdenken: Wie frühe Substanznutzung zu Unterschieden in der Gehirnstruktur bei Jugendlichen führen könnte
Viele Unterschiede schienen bereits vor jeglichem Substanzkonsum zu bestehen, was auf die Rolle hinweist, die die Gehirnstruktur beim Risiko des Substanzkonsums spielen könnte, wie eine vom NIH unterstützte Studie nahelegt….