Japanischer Teilchenbeschleuniger SuperKEKB startet durch
Mit dem Belle-II-Experiment wollen Wissenschaftlerinnen und Wissenschaftler eine seltene Symmetrieverletzung untersuchen – und die Frage klären, warum im heutigen Universum kaum mehr Antimaterie vorkommt. Eine entscheidende Rolle dabei spielen Zerfälle von B-Mesonen. Diese Teilchen werden beim Zusammenprall von Elektronen und Positronen gebildet.
Der neue SuperKEKB-Beschleuniger produziert 40mal so viele Kollisionsereignisse wie sein Vorgänger – und damit auch deutlich mehr Daten. Um diese analysieren zu können, wird derzeit auch der Belle-Detektor nachgerüstet. An Belle II arbeiten etwa 100 Forschungseinrichtungen aus 25 Ländern mit.
Das Exzellenzcluster Universe ist mit dem Max-Planck-Institut (MPI) für Physik, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München am Bau des innersten Detektors und der Entwicklung der Software zur Auswertung der Daten beteiligt.
Exzellenzcluster Universe an Software und Detektorbau beteiligt
„Mit dem Pixel-Vertex-Detektor lässt sich der Zerfallsort der B-Mesonen mit höchster Präzision messen“, erklärt Hans-Günther Moser, Wissenschaftler vom Max-Planck Institut für Physik. „Diese Informationen sind entscheidend, um mögliche Abweichungen in den Teilchenzerfällen feststellen zu können.“
Software-Koordinator Prof. Dr. Thomas Kuhr von der LMU ergänzt: „Außerdem sind wir nun in der Lage ein Vielfaches mehr an Daten zu verarbeiten – wir sprechen von über 200 GBit/s beim innersten Detektor. In Kombination mit verbesserten Algorithmen erwarten wir eine sehr große statistische Sicherheit, um bisher beobachtete Abweichungen vom Standard-Modell der Teilchenphysik auch verlässlich bestätigen oder widerlegen zu können.“
„Seit Jahren bereiten wir diese sehr aufwendigen Messungen in Japan vor. Mit der erfolgreichen Inbetriebmnahme des Beschleunigers und des Belle II Experiments in Japan öffnet sich nun die Tür für einzigartige wissenschaftliche Resultate und hoffentlich vielen Überraschungen.“
Mit dem Belle-II-Experiment wollen Wissenschaftlerinnen und Wissenschaftler eine seltene Symmetrieverletzung untersuchen – und die Frage klären, warum im heutigen Universum kaum mehr Antimaterie vorkommt. Eine entscheidende Rolle dabei spielen Zerfälle von B-Mesonen. Diese Teilchen werden beim Zusammenprall von Elektronen und Positronen gebildet.
Der neue SuperKEKB-Beschleuniger produziert 40mal so viele Kollisionsereignisse wie sein Vorgänger – und damit auch deutlich mehr Daten. Um diese analysieren zu können, wird derzeit auch der Belle-Detektor nachgerüstet. An Belle II arbeiten etwa 100 Forschungseinrichtungen aus 25 Ländern mit. Das Exzellenzcluster Universe ist mit dem Max-Planck-Institut (MPI) für Physik, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM) am Bau des innersten Detektors und der Entwicklung der Software zur Auswertung der Daten beteiligt.
Exzellenzcluster Universe an Software und Detektorbau beteiligt
„Mit dem Pixel-Vertex-Detektor lässt sich der Zerfallsort der B-Mesonen mit höchster Präzision messen“, erklärt Hans-Günther Moser, Wissenschaftler vom Max-Planck Institut für Physik. „Diese Informationen sind entscheidend, um mögliche Abweichungen in den Teilchenzerfällen feststellen zu können.“ Software-Koordinator Prof. Dr. Thomas Kuhr von der LMU ergänzt: „Außerdem sind wir nun in der Lage ein Vielfaches mehr an Daten zu verarbeiten – wir sprechen von über 200 GBit/s beim innersten Detektor. In Kombination mit verbesserten Algorithmen erwarten wir eine sehr große statistische Sicherheit, um bisher beobachtete Abweichungen vom Standard-Modell der Teilchenphysik auch verlässlich bestätigen oder widerlegen zu können.“
Am 21. März 2018 wurde erfolgreich ein Elektronenstrahl in den Beschleunigerring eingebracht. Ihm folgt Anfang April ein Positronenstrahl. Parallel dazu laufen die letzten Vorbereitungen für die erste Teilchenkollision, die bald stattfinden soll.
Ein Tandem für Suche nach neuer Physik
Der SuperKEKB-Beschleuniger und der Belle II-Detektor bilden ein Tandem, mit dem Wissenschaftler nach neuer Physik jenseits des Standardmodells suchen. Hinweise darauf hoffen sie in seltenen Zerfällen von Teilchen zu finden, wie B-Mesonen, Charm-Hadronen und Tau-Leptonen. „Mit der erfolgreichen Inbetriebnahme des Beschleunigers und des Belle II-Experiments öffnet sich nun die Tür für einzigartige wissenschaftliche Resultate und hoffentlich vielen Überraschungen“, sagt Teilchenphysiker Prof. Dr. Stephan Paul von der TUM.
Mit der Modernisierung stellt SuperKEKB einen neuen Rekord auf. Im Vergleich mit anderen Beschleunigern erzielt er die höchste Luminosität. Darunter versteht man die Anzahl von Kollisionen pro Sekunde und definierter Fläche. Auch gegenüber seinem Vorgänger legt SuperKEKB deutlich zu: Pro Sekunde entstehen 1.000 B-/Anti-B-Mesonenpaare – bei KEKB waren es 25.
Ansprechpartner:
Prof. Dr. Thomas Kuhr
Ludwig-Maximilians-Universität München
Software Coordinator Belle II
Exzellenzcluster Univers
Telefon: +49 35831-7174
E-Mail: thomas.kuhr@lmu.de
Dr. Hans-Günther Moser
Max-Planck-Institut für Physik
Chair Institutional Board Belle II
Telefon: +49 89 32354-248
E-Mail: moser@mpp.mpg.de
https://www.kek.jp/en/newsroom/2018/03/22/0900/ Pressemitteilung und weitere Bilder des japanischen Forschungszentrums KEK
http://www.universe-cluster.de/superkekb Pressemitteilung Exzellenzcluster Universe
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Globale Studie identifiziert Gene für Depressionen in verschiedenen Ethnien
Neue genetische Risikofaktoren für Depression wurden erstmals in allen großen Weltbevölkerungen identifiziert und ermöglichen es Wissenschaftler*innen, das Risiko für Depression unabhängig von der ethnischen Zugehörigkeit vorherzusagen. Die bislang größte und…
Zurück zu den Grundlagen: Gesunder Lebensstil reduziert chronische Rückenschmerzen
Rückenschmerzen im unteren Rückenbereich sind weltweit eine der Hauptursachen für Behinderungen, wobei viele Behandlungen wie Medikamente oft keine dauerhafte Linderung bieten. Forscher des Centre for Rural Health der Universität Sydney…
Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut
Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…