Quantenketten in Graphen-Nanobändern
Ein Material, das aus Atomen eines einzigen Elements besteht, aber je nach atomarem «Schnittmuster» ganz andere Eigenschaften aufweist – das mag seltsam klingen, ist aber bei Nanobändern aus Graphen tatsächlich Realität.
Die Bänder, die nur wenige Kohlenstoffatome breit und genau ein Atom dick sind, besitzen je nach Form und Breite ganz unterschiedliche elektronische Eigenschaften: Leiter, Halbleiter oder aber Isolator. Einem internationalen Forschungsteam unter Federführung der Empa-Abteilung «nanotech@surfaces» ist es nun gelungen, durch eine gezielte Variation der Form der Bänder deren Eigenschaften präzise einzustellen.
Das Besondere daran: Damit lassen sich nicht nur die oben genannten «gewöhnlichen» elektronischen Eigenschaften verändern – auch die Erzeugung spezieller lokaler Quantenzustände ist durch diese Technologie möglich.
Was steckt dahinter? Wenn die Breite eines schmalen Graphen-Nanobands ändert, in diesem Fall von sieben auf neun Atome, entsteht am Übergang eine spezielle Zone: Weil sich die elektronischen Eigenschaften der beiden Bereiche auf eine besondere, sogenannte topologische Art unterscheiden, entsteht in der Übergangszone ein «geschützter» und damit sehr robuster neuer Quantenzustand.
Diesen örtlich begrenzten elektronischen Quantenzustand kann man nun als Grundbaustein nutzen, um massgeschneiderte Halbleiter, Metalle oder Isolatoren zu erzeugen – und möglicherweise sogar einmal als Bauelement in Quantencomputern einzusetzen.
Die Forschenden der Empa unter der Leitung von Oliver Gröning konnten zeigen: Werden die Bänder so gebaut, dass sich unterschiedlich breite Bereiche regelmässig abwechseln, dann entsteht durch die vielen Übergänge eine Kette von untereinander verknüpften Quantenzuständen mit einer eigenen elektronischen Struktur.
Das Spannende daran: Je nach Breite der unterschiedlichen Segmente ändern sich die elektronischen Eigenschaften der Kette. Dadurch lassen sich diese fein einstellen – vom Leiter zu Halbleitern mit unterschiedlich grossen Bandlücken. Dieses Prinzip lässt sich auf viele verschiedene Überganszonen anwenden – zum Beispiel auch auf diejenige von sieben auf elf Atome.
«Die Bedeutung dieser Entwicklung wird auch dadurch unterstrichen, dass eine Forschergruppe der University of California, Berkeley, unabhängig von uns zu analogen Ergebnissen gekommen ist», so Gröning. Die Arbeit des US-Forscherteams ist in derselben «Nature»-Ausgabe erschienen.
Auf dem Weg zur Nanoelektronik
Auf Basis dieser neuartigen Quantenketten könnten sich künftig präzise Nanotransistoren herstellen lassen – ein grundlegender Schritt auf dem Weg zur Nanoelektronik. Denn ob der Schaltabstand zwischen dem «1»-Zustand und dem «0»-Zustand des Nanotransistors auch tatsächlich genügend gross ist, hängt von der Bandlücke des Halbleiters ab – und mit der neuen Methode lässt sich diese fast beliebig einstellen.
In der Realität ist dies aber nicht ganz so einfach: Damit die Kette die gewünschten elektronischen Eigenschaften erhält, muss jedes einzelne der mehreren hundert oder gar tausenden Atome auch am richtigen Ort sein. «Dahinter steckt eine komplexe, interdisziplinäre Forschungsarbeit», so Empa-Forscher Gröning.
«Dabei arbeiteten Forschende aus unterschiedlichen Fachgebieten in Dübendorf, Mainz, Dresden, und Troy (USA) zusammen – vom theoretischen Verständnis über das spezifische Wissen, wie Vorläufermoleküle gebaut werden müssen und wie man die Strukturen auf Oberflächen gezielt wachsen lassen kann, bis hin zur strukturellen und elektronischen Analyse mittels eines Rastertunnelmikroskops.»
Ein Ausflug in die Quantenwelt
Ultrakleine Transistoren – und damit der nächste Schritt in der weiteren Miniaturisierung elektronischer Schaltkreise – liegen hier als Anwendungsmöglichkeit nahe: Sie sind zwar eine technische Herausforderung, doch eigentlich funktioniert Elektronik, die auf Nanotransistoren aufgebaut ist, nicht fundamental anders als die heutige Mikroelektronik.
Die von den Empa-Forschern hergestellten halbleitenden Nanobänder würden es erlauben, Transistoren mit einem 1’000-mal kleineren Kanalquerschnitt als heute üblich zu realisieren. Es lassen sich aber auch weitergehende Möglichkeiten vorstellen, etwa im Bereich der Spintronik oder gar der Quanteninformatik.
Denn die elektronischen Quantenzustände an bestimmten Übergängen verschieden breiter Graphen-Nanobänder können zusätzlich auch ein magnetisches Moment tragen. Dies könnte es ermöglichen, Information nicht wie bisher üblich durch Ladung, sondern durch den sogenannten Spin – im übertragenen Sinne die «Drehrichtung» des Zustandes – zu verarbeiten.
Und die Entwicklung könnte sogar noch einen Schritt weitergehen. «Wir haben beobachtet, dass an den Enden bestimmter Quantenketten topologische Endzustände auftreten. Dies bietet die Möglichkeit, diese sich als Elemente sogenannter Qubits zu nutzen – die komplexen, untereinander verschränkten Zustände in einem Quantenrechner», erklärt Oliver Gröning.
Heute und morgen wird aber noch kein Quantencomputer aus Nanobändern gebaut – es sei noch einiges an Forschung nötig, so Gröning: «Die Möglichkeit, die elektronischen Eigenschaften durch die gezielte Verknüpfung einzelner Quantenzuständen flexibel einzustellen, stellt für uns einen grossen Sprung in der Herstellung neuer Materialien für ultra-miniaturisierte Transistoren dar.» Dabei spielt die Tatsache, dass diese Materialien unter Umgebungsbedingungen stabil sind, für die Entwicklung künftiger Anwendungen eine wichtige Rolle.
«Faszinierend ist allerdings auch das weitergehende Potenzial der Ketten, lokale Quantenzustände zu erzeugen und diese gezielt miteinander zu verknüpfen», so Gröning weiter. «Ob sich dieses Potenzial auch tatsächlich für künftige Quantenrechner nutzen lässt, ist allerdings noch völlig offen.» Denn hier genüge es nicht, lokalisierten topologische Zustände in den Nanobändern zu erzeugen – diese müssten auch mit andern Materialien wie Supraleitern so gekoppelt werden, dass die Voraussetzungen für Qubits tatsächlich gegeben sind.
Informationen
Dr. Oliver Gröning
nanotech@surfaces
Tel. +41 58 765 4669
oliver.groening@empa.ch
Redaktion / Medienkontakt
Karin Weinmann
Kommunikation
Tel. +41 58 765 47 08
redaktion@empa.ch
O Gröning, S Wang, X Yao, CA Pignedoli, G Borin Barin, C Daniels, A Cupo, V Meunier, X Feng, A Narita, K Müllen, P Ruffieux R Fasel; Engineering of robust topological quantum phases in graphene nanoribbons; Nature (2018); doi: 10.1038/s41586-018-0375-9
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Überlebenskünstler im extremen Klima der Atacama-Wüste
Welche Mikroorganismen es schaffen, in den extrem trockenen Böden der Atacama-Wüste zu überleben, und welche wichtigen Funktionen sie in diesem extremen Ökosystem übernehmen – zum Beispiel bei der Bodenbildung –,…
Hoffnung für Behandlung von Menschen mit schweren Verbrennungen
MHH-Forschende entwickeln innovatives Medikament, um die Abstoßung von Spenderhaut-Transplantaten zu verhindern. Wenn Menschen schwere Verbrennungen erleiden, besteht nicht nur die Gefahr, dass sich die Wunde infiziert. Der hohe Flüssigkeitsverlust kann…
Neue Erkenntnisse zur Blütezeit-Regulation
Einfluss von Kohlenstoff- und Stickstoff-Signalwegen auf Blütenrepressoren bei Arabidopsis. In einer aktuellen Publikation in der Fachzeitschrift Plant Physiology hat ein internationales Forschungsteam, dem unter anderem Dr. Justyna Olas als eine…