2,2 Millionen Euro Forschungsförderung für Wasserstofftechnologie

Busse, die mit langlebigen, robusten Brennstoffzellen nahezu emissions- und geräuschlos durch Städte fahren, umweltfreundliche Speicher, die Strom aus Windenergie ohne Wirkungsgradverlust in Gas umwandeln und selbst in kleinsten Anlagen Platz finden – solche noch vagen Zukunftsszenarien könnten bald Wirklichkeit werden.

An der Professur für Elektrische Energiesysteme der Helmut-Schmidt-Universität/Universität der Bundeswehr in Hamburg startet Univ.-Prof. Dr.-Ing. Detlef Schulz ein neues, innovatives Forschungsprojekt. Aufbauend auf nationalen und internationalen Patenten entwickelt sein Team neuartige Wasserstofftechnologien der nächsten Generation. Das Bundesministerium für Wirtschaft und Energie fördert das Projekt bis 2021 mit knapp 2,2 Millionen Euro (Förderkennzeichen 03ET6133A).

„Im Grunde bearbeiten wir zwei Teilprojekte, die wir anschließend zusammenführen wollen. Zum einen analysieren wir elektrisch steuerbare Membraneinheiten in Brennstoffzellen, zum anderen entwickeln wir eine interne Methanisierung erneuerbarer Energien innerhalb eines Elektrolyseurs, um die bisher hohen Wirkungsgradverluste bei nachgeordneten Verfahren zu vermindern“, sagt Detlef Schulz.

Im ersten Teilprojekt werden die Forscher neue Steuerverfahren an Membranen von sogenannten PEM-Brennstoffzellsystemen (PEM steht für Polymerelektrolyt) realisieren. Diese reagieren zwar relativ schnell auf dynamische Laständerungen, unterliegen dabei aber Spannungs- und Leistungseinbrüchen im Bereich mehrerer Sekunden. Diese Einbrüche werden in Pilotprojekten beispielsweise bei Bussen unter anderem über zusätzliche Batterien aufgefangen. Das erzeugt Zusatzkosten, erfordert Platz und bedeutet ein mehr an Gewicht.

„Mit einer elektrisch steuerbaren Membran könnten wir die Reaktionsgeschwindigkeit direkt beeinflussen und Spannungs- und Leistungseinbrüchen gezielt entgegenwirken“, sagt Detlef Schulz. Dies geschieht, indem „wir in die Membran, die an sich ja sehr dünn ist, Steuergitter einbringen. Man kann sich die Membran so vorstellen wie den luftdurchlässigen Stoff einer Regenjacke. Die Steuergitter werden in mehreren Schichten aufgedampft und gut verteilt.“

PEM-Brennstoffzellen sind eigentlich sehr gut in hoher Stückzahl produzierbar. Um Spannungs- und Leistungseinbrüche aufzufangen und damit die Versorgungsicherheit zu garantieren, werden diese Zellen heute jedoch von vornherein sehr viel größer dimensioniert, so Detlef Schulz. Steuergitter würden die Lebensdauer und Versorgungssicherheit der PEM-Brennstoffzellen verlängern. Die Zellen könnten zudem sehr viel kleiner geraten. Dies wird der bisher eher zögerlichen stationären, aber auch mobilen Marktdurchsetzung derartiger Systeme entgegenwirken.

Das zweite Teilprojekt beschäftigt sich mit der Langzeitspeicherung der durch Wind oder Sonne gewonnenen fluktuierenden elektrischen Energie. „Deren Umwandlung in chemische Energieträger, etwa in Wasserstoff und Methan, bietet noch erhebliches Optimierungspotential.“

Heute wird der power to gas erzeugte Wasserstoff entweder direkt in die Erdgasleitung eingespeist oder in einer nachgeschalteten Apparatur über zwei Stufen zu Methan umgewandelt. Dabei treten spürbare Wirkungsgradverluste auf.

„Würde der Wasserstoff intern im Gasauslasskanal des Elektrolyseurs umgewandelt, also methanisiert, könnte der in das Erdgasnetz einspeisbare Anteil an erneuerbaren Energien wesentlich erhöht werden, was nebenbei die Temperatursynergien besser nutzt und die Prozesseffizienz steigert. Das ist technisch sehr anspruchsvoll, aber wir haben schon einige Ideen, wie es gelingen kann.“ Auf den Prototyp der High efficiency fuel cell mit integriertem Wasserstoffspeicher im Gasauslasskanal hält Detlef Schulz bereits seit 2013 ein Patent.

Das Ziel ist hoch gesetzt: „Wenn uns die Methanisierung im Gasauslasskanal gelingt, könnten in Zukunft kleine dezentrale Methanisierungsanlagen gebaut werden und die bisher sehr großen Anlagen ersetzen.“

Beide Teilprojekte wird Detlef Schulz in den kommenden drei Jahren mit drei Mitarbeitern und in Kooperation mit der Altran Deutschland S.A.S. & Co. KG im universitätseigenen Brennstoffzellenlabor durch- und am Ende zusammenführen. „Ihre Umsetzung bedeutet einen großen Schritt für die Einsatzfähigkeit von Wasserstofftechnologien in elektrischen Energiesystemen. Wasserstoff hat als Energieträger enormes Potential. Deshalb forschen wir weiter an derartigen Technologien.“

„Mit der zu erforschenden Technologie kann auch die Sektorenkopplung, das heißt die flexible Kopplung von Strom-, Gas- und Wärmenetz, weiter vorangetrieben werden. Die Grundidee besteht hierbei darin, medienübergreifende Speichermöglichkeiten und damit mehr Freiheitsgrade zu schaffen.“

Univ.-Prof. Dr.-Ing. habil. Detlef Schulz
Professur für Elektrische Energiesysteme
Telefon 040 6541-2757
E-Mail: detlef.schulz@hsu-hh.de

Media Contact

Dietmar Strey idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.hsu-hh.de/

Alle Nachrichten aus der Kategorie: Förderungen Preise

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…