Schlanke Brücke mit enormer Widerstandsfähigkeit
Er ist fast so widerstandsfähig wie Stahl, hat eine lange Lebensdauer und ermöglicht schlanke Bauwerke: Ultrahochfester Beton. Trotz seiner positiven Eigenschaften wird er in Deutschland jedoch kaum eingesetzt. „Es handelt sich um ein neues Material, das sich anders verhält als der herkömmliche Beton“, erklärt Prof. Oliver Fischer vom Lehrstuhl für Massivbau der TUM. „In Deutschland existiert noch kein eingeführtes Regelwerk für seinen Einsatz.“
Das Material wird international bereits seit Jahren erforscht – auch an der TU München. Das Besondere: Durch seine Zusammensetzung ist der Werkstoff besonders dicht, besitzt also kaum Hohlräume, in die Nässe oder Salze eindringen können, die das Material schädigen. Auch hält es im Vergleich zum konventionellen Beton, der derzeit im Brückenbau verwendet wird, dem vier- bis fünffachen Druck stand, ist also sehr viel „fester“.
25 Zentimeter schlanker
Für die 6,50 Meter lange Eisenbahnbrücke über den Dürnbach bei Gmund ist das Material ideal. Denn der Abstand des Baches zur Unterkante der neuen Brücke sollte für den Fall eines Hochwassers so groß wie möglich sein. Durch das innovative Material sowie flachere Bahnschwellen konnten mehr als 25 Zentimeter Bauhöhe eingespart werden.
Das neue Brückenteil aus ultrahochfesten Beton ist relativ leicht, sodass die von der vorherigen Brücke vorhandenen Unterbauten weiter genutzt werden konnten. Das vergleichsweise geringe Eigengewicht erleichterte den Transport und die Verlegung des Bauwerks erheblich, weshalb das Gleis nur für einen relativ kurzen Zeitraum gesperrt werden musste.
Messungen im laufenden Betrieb
Unterstützt und in Auftrag gegeben wurde die Brücke von der Tegernsee-Bahn GmbH (TBG). Die Gründe erläutert TBG-Geschäftsführer Heino Seeger: „Die Tegernsee-Bahn setzt sich generell für einen zukunftsorientierten Schienenpersonennahverkehr ein. Dazu gehört auch, die Eisenbahninfrastruktur bestmöglich zu entwickeln. Eine intensive Machbarkeitsprüfung zur Anwendung des neuen Werkstoffes ergab für das Pilotprojekt wesentliche konstruktive Vorteile. Wir freuen uns daher, dass wir die TU München in der Erstanwendung für eine Bahnbrücke unterstützen können und dass wir einen weiteren, wichtigen Beitrag, auch für das Oberland, leisten zu können.“
Die Forscher erhoffen sich durch Messungen während des laufenden Betriebs wichtige Erkenntnisse, die unter anderem in ein zukünftiges Regelwerk für die Anwendung des Materials einfließen sollen, zum Beispiel auch für die Verstärkung bestehender Brücken. Die ersten Ergebnisse bestätigen die vorher gemachten Berechnungen.
Mehr Zugfestigkeit durch Carbonkurzfasern aus dem 3D-Drucker
Die hohe Dichte und Festigkeit erhält der ultrahochfeste Beton durch ein genau abgestimmtes Verhältnis von Zementpartikeln, feinen Zusatzstoffen und abgestuften Gesteinskörnungen. Ein weiterer wichtiger Bestandteil des ultrahochfesten Betons sind Mikrostahlfasern. Sie sorgen für eine höhere Zugfestigkeit. Denn wie beim Tauziehen auf das Seil, wirken im Inneren der belasteten Brücke auch Zugkräfte, die sicher übertragen werden müssen.
In einem nächsten Schritt wollen die Ingenieure die Zugfestigkeit des ultrahochfesten Betons noch weiter erhöhen: zum Beispiel durch Carbonkurzfasern aus dem 3D-Drucker. Diese können zum einen leichter in eine bestimmte Richtung im Beton ausgerichtet werden, zum anderen vernetzen sie sich besser mit dem Material und ermöglichen eine noch höhere Tragfähigkeit sowie eine längere Lebensdauer.
Mehr Informationen:
Die Konzeption der Lösung, die gutachterliche Stellungnahme zur Erwirkung der erforderlichen Zustimmung im Einzelfall, die Entwurfsplanung und bautechnische Prüfung erfolgte durch den Lehrstuhl Massivbau der TUM in Zusammenarbeit mit dem Ingenieurbüro Büchting+Streit AG,die Ausführungsplanung durch das Ingenieurbüro SSF Ingenieure AG. Die Herstellung des Fertigteils wurde an die Firma Max Bögl beauftragt. Dabei kam ein UHPC Compound der Firma HeidelbergCement AG zum Einsatz.
Die Stiftung Bayerisches Baugewerbe hat die Begleitung und messtechnischen Überwachung der Pilotbrücke finanziell unterstützt.
Prof. Dr.-Ing. Oliver Fischer
Technische Universität München
Lehrstuhl für Massivbau
oliver.fischer@tum.de
+49 (89) 289 – 23038
https://mediatum.ub.tum.de/1452953 Bilder zur redaktionellen Verwendung
Media Contact
Weitere Informationen:
http://www.tum.deAlle Nachrichten aus der Kategorie: Architektur Bauwesen
Die zukunftsorientierte Gestaltung unseres Wohn- und Lebensraumes erhält eine immer größer werdende Bedeutung. Die weltweite Forschung in den Bereichen Architektur und Bauingenieurwesen leistet hierzu einen wichtigen Beitrag.
Der innovations-report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Nachhaltiges Bauen, innovative Baumaterialien, Bautenschutz, Geotechnik, Gebäudetechnik, Städtebau, Denkmalschutz, Bausoftware und Künstliche Intelligenz im Bauwesen.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…