Clevere Kombination von harten und weichen Materialien verbessert die Haftung auf rauen Oberflächen
Damit lassen sich nicht nur industrielle Handling-Prozesse verbessern und sicherer machen. Die Materialien sind auch vielversprechend für Anwendungen auf der Haut, wie zum Beispiel für selbsthaftende Wundverschlüsse oder sogenannte Wearables – vernetzte Computer, die direkt auf der Haut getragen werden könnten.
Die Ergebnisse stellten die Wissenschaftler in der renommierten Fachzeitschrift Applied Materials & Interfaces vor. Für diese Publikation erhielt nun der Co-Autor René Hensel den Adhesion Innovation Award der EURADH (European Adhesion Conference) und FEICA (Association of the European Adhesive & Sealant Industry).
Für ihre Untersuchungen entwickelten die Forscher zwei Millimeter große Säulen als Modellsystem und brachten diese mit rauen Oberflächen in Kontakt. Die gemessene Kraft, die benötigt wird, um die Säule wieder abzulösen, ist das Maß für die Haftung.
„Wir verwendeten Säulen, die aus einem harten Material bestehen und deren Ende mit einem weichen Kunststoff überzogen ist. Für das Ablösen dieser Säule benötigten wir die fünffache Kraft im Vergleich zu einer Säule, die nur aus dem weichen Material besteht. Sie haftet also deutlich besser“, erklärt René Hensel, stellvertretender Leiter des Programmbereichs Funktionelle Mikrostrukturen.
Bei den Untersuchungen stellten die Forscher fest, dass die Haftung umso besser ist, je weicher und dünner der Überzug am Säulenende ist. „Je weicher das Material ist, umso besser kann es sich der rauen Oberfläche anpassen. Dass die Haftung stärker ist je dünner der Überzug ist, hängt mit der verzögerten Rissbildung im Kontakt zusammen:
Wenn ein Riss entsteht, löst sich die Haftstruktur von der Oberfläche ab. Diese Rissbildung verzögert sich, weil Spannungsspitzen verringert werden. Deshalb treten der Riss und das Ablösen erst bei höherer Belastung auf. „Dieser Effekt ist erstaunlicherweise umso stärker, je dünner der Überzug ist“, sagt Hensel. Auch die Form, wie die beiden unterschiedlich harten Materialien kombiniert werden hat einen Einfluss auf das Haftvermögen: eine abgerundete Grenzfläche zwischen beiden sorgt für eine bessere Haftung. Dabei verändere sich die Rissbildung ebenfalls.
Gleichzeitig müsse die Dicke des weichen Überzugs zur Größe der Rauigkeit passen: „Bei einer Raufaser-Tapete ist die Rauigkeit zum Beispiel viel gröber als bei Hautoberflächen. Damit die Haftung auf Raufaser funktioniert, muss der weiche Überzug also viel dicker gewählt werden, als für die Haftung auf Haut“, sagt Hensel.
Dabei interessieren sich die Forscher gerade für die Haftung auf Haut ganz besonders. Sie spiele vor allem eine bedeutende Rolle bei der Entwicklung sogenannter Wearables oder auch bei der Wundversorgung und steht deshalb im Mittelpunkt der zukünftigen Forschung.
Das INM – Leibniz-Institut für Neue Materialien mit Sitz in Saarbrücken ist ein internationales Zentrum für Materialforschung. Es kooperiert wissenschaftlich mit nationalen und internationalen Instituten und entwickelt für Unternehmen in aller Welt. Die Forschung am INM gliedert sich in die drei Felder Nanokomposit-Technologie, Grenzflächenmaterialien und Biogrenzflächen. Das INM ist ein Institut der Leibniz-Gemeinschaft und beschäftigt rund 250 Mitarbeiter.
Dr. René Hensel
Stellvertretender Leiter Funktionelle Mikrostrukturen
Tel: 0681-9300-390
rene.hensel@leibniz-inm.de
ACS Appl. Mater. Interfaces, 2017, 9 (1), pp 1036–1044, DOI: 10.1021/acsami.6b11642; https://pubs.acs.org/doi/10.1021/acsami.6b11642
Media Contact
Weitere Informationen:
http://www.inm-gmbh.deAlle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Menschen vs Maschinen – Wer ist besser in der Spracherkennung?
Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…
Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung
Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…
Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme
Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…