Mit künstlicher Intelligenz das Erdsystem verstehen
Künstliche Intelligenz (KI) wird als Schlüsseltechnologie der Zukunft angesehen. Die Bundesregierung will in Ihrer Digitalisierungsstrategie drei Milliarden Euro in Künstliche Intelligenz investieren und zielt insbesondere auf Roboter und Sprachübersetzung. Doch auch die Geowissenschaften machen sich KI zu Nutze, um die Flut wissenschaftlicher Daten in neue Erkenntnisse über Klimaentwicklungen und das Erdsystem umsetzen zu können.
In den letzten Jahrzehnten wurden in den Geowissenschaften vor allem Eigenschaften modelliert, die über längere Zeiträume relativ beständig waren, wie z.B. die Eigenschaften von Böden auf lokaler bis hin zur globalen Ebene.
Seit einiger Zeit ist es nun möglich, dynamische Prozesse durch digitale Verfahren tiefen Lernens (Deep Learning) anzugehen. Dies erlaubte zum Beispiel die detaillierte Berechnung der globalen Photosynthese an Land unter besonderer Berücksichtigung jahreszeitlicher und kurzfristiger Schwankungen.
Beobachtungsdaten liefern grundlegende Gesetzmäßigkeiten
„Wir werden überflutet von klima-relevanten Daten, die von einer Unzahl an Messgeräten weltweit erhoben werden, aber wir hinken mit den Analysen und Schlussfolgerungen hinterher“, erklärt Prof. Markus Reichstein, geschäftsführender Direktor am Max-Planck-Institut für Biogeochemie in Jena, Direktoriumsmitglied am Michael-Stifel Zentrum Jena (MSCJ) und Erstautor der Publikation.
„Hier werden Deep-Learning-Techniken zu einem vielversprechenden Werkzeug, jenseits der üblichen Anwendungen des Maschinellen Lernen wie Bild- und Spracherkennung oder AlphaGo,“ fügt Prof. Joachim Denzler, Inhaber des Lehrstuhls für Digitale Bildverarbeitung der Friedrich-Schiller-Universität Jena und Mitglied des MSCJ, hinzu.
Wichtige Anwendungsbeispiele sind Extremereignisse, wie die kalifornischen Feuerwalzen im letzten Herbst oder zerstörerische Hurrikans, die in ihrer Häufigkeit und Stärke stark zunehmen. Sie basieren auf vielschichtigen Prozessen, die nicht nur durch lokale Gegebenheiten beeinflusst werden, sondern in einem weltumspannenden zeitlichen und räumlichen Zusammenhang miteinander stehen.
Dies gilt ebenso für atmosphärische und ozeanische Transportprozesse sowie Boden- und Vegetationsdynamiken, also einige der klassischen Themengebiete der Erdsystemwissenschaften.
Künstliche Intelligenz als Werkzeug für bessere Klima- und Erdsystemmodelle
Deep-Learning-Ansätze sind allerding kompliziert. Datengetriebene und statistische Herangehensweisen sind nicht zwangsweise physikalisch stimmig, hängen stark von der Datenqualität ab und können Probleme bei der Extrapolation machen. Zusätzlich sind die Anforderungen an die Rechenleistung und Speicherkapazitäten enorm hoch.
Die Wissenschaftler diskutieren all diese Anforderungen und Schwierigkeiten in ihrem Artikel und entwickeln eine Strategie, um maschinelles Lernen mit physikalischer Modellierung effizient zu verknüpfen. Mit diesen Hybrid-Modellen können beispielsweise Temperaturen der Meeresoberfläche simuliert werden.
Dabei übernehmen physikalische Modelle die Darstellung der Temperaturen, während die Ozeanströme mit Hilfe von maschinellem Lernen untersucht werden. „Die Idee dabei ist, das Beste aus beiden zu vereinen: die Übereinstimmung der physikalischen Modelle mit den naturwissenschaftlichen Grundlagen und die Vielseitigkeit des maschinellen Lernens“, erläutert Reichstein. „So bekommen wir stark verbesserte Modelle.“
Die Wissenschaftler sind überzeugt, dass die saisonale und langfristige Vorhersage von Wetter und Klima sowie die Frühwarnung vor Extremereignissen stark von Deep-Learning und Hybrid-Modellen profitieren werden.
Prof. Dr. Markus Reichstein
Tel: +49 (0)3641 57 6200
E-Mail: mreichstein@bgc-jena.mpg.de
Deep learning and process understanding for data-driven Earth system science
Reichstein M., Camps-Valls G., Stevens B., Jung M., Denzler J. Cavalhais N., Prabhat (2019)
Nature xx, doi: 10.1038/s41586-019-0912-1
https://www.bgc-jena.mpg.de/bgi/index.php/Main/HomePage Webseiten der MPI-BGC-Abteilung Reichstein
http://www.inf-cv.uni-jena.de/denzler Webseiten des FSU-Lehrstuhls Denzler
Media Contact
Alle Nachrichten aus der Kategorie: Geowissenschaften
Die Geowissenschaften befassen sich grundlegend mit der Erde und spielen eine tragende Rolle für die Energieversorgung wie die allg. Rohstoffversorgung.
Zu den Geowissenschaften gesellen sich Fächer wie Geologie, Geographie, Geoinformatik, Paläontologie, Mineralogie, Petrographie, Kristallographie, Geophysik, Geodäsie, Glaziologie, Kartographie, Photogrammetrie, Meteorologie und Seismologie, Frühwarnsysteme, Erdbebenforschung und Polarforschung.
Neueste Beiträge
Neue Erkenntnisse zur Blütezeit-Regulation
Einfluss von Kohlenstoff- und Stickstoff-Signalwegen auf Blütenrepressoren bei Arabidopsis. In einer aktuellen Publikation in der Fachzeitschrift Plant Physiology hat ein internationales Forschungsteam, dem unter anderem Dr. Justyna Olas als eine…
Wenn Hepatitis-E-Viren Nervenzellen angreifen
Hepatitis-E-Viren (HEV) verursachen normalerweise Leberinfektionen. Sie können aber auch andere Organe befallen und insbesondere neurologische Erkrankungen auslösen. Über die Details ist noch wenig bekannt. Ein Forschungsteam um Michelle Jagst und…
Was T-Zellen im Tumor müde macht
Detaillierte Analyse im Journal Blood von Extramedullären Läsionen beim multiplen Myelom und neue Therapieansätze. Die extramedulläre Erkrankung (EMD) ist ein Hochrisikofaktor beim Multiplen Myelom. Angela Riedel und Leo Rasche vom…