Nachhaltig und wirtschaftlich: Das Recyceln von Faserverbundkunststoffen
Der Industrieeinsatz von Faserverbundkunststoffe im Leichtbau, wie in der Luftfahrt oder der Automobilbranche, wächst stetig. Daher haben die Wirtschaft und die Politik ein großes Interesse daran, die ausrangierten Bauteile aus Faserverbundkunststoffen wieder zu verwerten.
Die Arbeitsgruppe um Prof. Dr. Gerd Wehnert von der Fakultät Angewandte Chemie der TH Nürnberg entwickelt im Forschungsprojekt „CERES“ eine Methode, vernetzte Kunststoffe auf Epoxidharzbasis einfach, schnell und mit geringem Energieaufwand zu recyceln. Die STAEDTLER Stiftung fördert erfreulicherweise dieses spannende Projekt mit 40.000 Euro.
Nürnberg, 7. März 2019. Das Forschungsteam um Prof. Dr. Gerd Wehnert von der Fakultät Angewandte Chemie der TH Nürnberg forscht im Projekt „CERES“ (Chemisches Recycling epoxidharzbasierter Stoffe) an einer Methode, Faserverbundkunststoffe kosteneffizient zu recyceln. Ein Durchbruch könnte der Wirtschaft einen großen Mehrgewinn bringen.
Der Airbus A350, der BMW i3 und Windkraftanlagen haben eines gemeinsam: Sie alle werden aus Faserverbundkunststoffen hergestellt. Faserverbundkunststoffe bestehen aus Verstärkungsfasern und einer Kunststoffmatrix. Sie bilden eine synergetische Kombination der Eigenschaften ihrer Einzelkomponenten: die verstärkenden, kraftaufnehmenden Fasern sowie die formgebende Matrix, die auch als Schutz vor äußeren Einflüssen dient.
Die Faserverbundkunststoffe haben eine hohe Festigkeit und Steifheit bei vergleichsweise geringer Dichte – das macht sie für den Leichtbau wie in der Luftfahrt oder im Automobilbau, aber auch für die Sport- und Freizeitindustrie interessant.
Durch den stetig wachsenden Einsatz von Faserverbundkunststoffen haben die Wirtschaft und die Politik ein großes Interesse daran, die Nachhaltigkeit dieser Stoffe zu steigern. Prof. Dr. Gerd Wehnert entwickelt ein Verfahren, die Faserverbundkunststoffe zu recyceln und die enthaltenen Fasern mit geringem Energieaufwand einfach und schnell wiederverwerten zu können.
Die Faserverbundkunststoffe bestehen teilweise aus einer Kunststoffmatrix. Diese Kunststoffmatrix ist oftmals ein Epoxidharz – ein aushärtendes Kunstharz, das starke Belastungen aushält. Der jährliche Gesamtumsatz an Epoxidharzen liegt bei rund 9,2 Milliarden US-Dollar, das birgt ein hohes Potenzial.
„Nach aktuellem Stand der Technik können gerade die häufig eingesetzten epoxidharzbasierten Verbundkunststoffe nur sehr energie- und zeitaufwendig und damit kostenintensiv recycelt werden“, so Prof. Dr. Gerd Wehnert.
Duromere, durch chemische Reaktion vernetzte Kunststoffe, lassen sich nicht mehr aufschmelzen – sie können bisher nicht effizient recycelt werden. Eine gute Möglichkeit zur Weiterverwendung würde in einem chemischen Recycling bestehen, bei dem die Vernetzungsstellen chemisch gespalten und das Duromer so in kleinere, lösliche Moleküle zerlegt wird.
Bei Epoxidharzen, wie der Kunststoffmatrix bei den Faserverbundkunststoffen, ist es noch nicht gelungen, dieses Prinzip technisch anzuwenden. An diesem Punkt setzt das Forschungsprojekt „CERES“ an. Prof. Dr. Gerd Wehnert und sein Team forschen an einem Recyclingreagenz, mit der die Solvolyse der Faserverbundkunststoffe möglich ist, d.h. der Bruch der chemischen Bindung durch ein spezielles Reagenz.
Das Ziel ist, dabei die kostspieligen Fasern nicht zu beschädigen, eine Wiederverwertung ist so möglich. Als Agens für diese Reaktion untersucht das Forschungsteam eine Chemikalienkombination, die Epoxidharznetzwerke bereits bei geringem Energieaufwand einfach, schnell und nahezu vollständig zersetzen könnte.
„Für das Recycling von epoxidharzbasierten Faserverbundkunststoffen liegt der Schlüssel in der chemischen Spaltung. Wir entwickeln deshalb in diesem Forschungsprojekt ein Reagenz zur Zersetzung der Vernetzungsstellen von Epoxidharzen“, so Prof. Dr. Gerd Wehnert.
„Wir stellen Epoxidharzmodellnetzwerke her und erproben daran Reagenzien, die die Modellnetzwerke spalten können. Ist ein Reagenz technisch einsatzfähig, übertragen wir es auf epoxidharzbasierte Faserverbundstoffe.“
Sobald das Reagenz die Matrix des epoxidharzbasierten Bauteils angegriffen hat, wird die zersetzte Matrix von den Fasern gewaschen. Dieses Verfahren sichert die kostbaren Fasern, die anschließend für die Herstellung neuer Faserbundkunststoffe wiederverwertet werden können.
Das Labor für makromolekulare Chemie an der Fakultät Angewandte Chemie der TH Nürnberg bietet durch sein kompetentes Team und die funktionale und moderne Ausstattung gute Voraussetzungen für die Forschung an diesem innovativen Recyclingverfahren. Die Arbeitsgruppe um Prof. Dr. Gerd Wehnert leistet mit diesem Forschungsprojekt nicht nur einen Beitrag für die Nachhaltigkeit, sondern auch für die Wirtschaftlichkeit.
So weist ein Kilogramm von zehn Millimeter langen, matrixfreien Carbonkurzfasern einen Marktwert von etwa 150 Euro auf. Auf die Gesamtproduktion eines Jahres gerechnet, haben die recycelten Fasern einen Wert von etwa 3,5 Milliarden Euro, für die Wirtschaft ist das ein erheblicher Mehrwert.
Die STAEDTLER Stiftung fördert erfreulicherweise dieses spannende Projekt mit 40.000 Euro.
Hinweis für Redaktionen:
Kontakt:
Hochschulkommunikation, Tel. 0911/5880-4101, E-Mail: presse@th-nuernberg.de
Media Contact
Weitere Informationen:
http://www.th-nuernberg.deAlle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme
Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…
Globale Studie identifiziert Gene für Depressionen in verschiedenen Ethnien
Neue genetische Risikofaktoren für Depression wurden erstmals in allen großen Weltbevölkerungen identifiziert und ermöglichen es Wissenschaftler*innen, das Risiko für Depression unabhängig von der ethnischen Zugehörigkeit vorherzusagen. Die bislang größte und…
Zurück zu den Grundlagen: Gesunder Lebensstil reduziert chronische Rückenschmerzen
Rückenschmerzen im unteren Rückenbereich sind weltweit eine der Hauptursachen für Behinderungen, wobei viele Behandlungen wie Medikamente oft keine dauerhafte Linderung bieten. Forscher des Centre for Rural Health der Universität Sydney…