Alzheimer im Mini-Gehirn
Ausgangssubstanz für beide Arten von Ablagerungen ist das amyloide Vorläuferprotein APP. Es ist eingebettet in die Zellmembran der Nervenzellen, aus der es sowohl außen als auch innen herausragt. Normalerweise wird es nur einmal nahe der Mitte gespalten. Der innerhalb der Zelle abgespaltene Teil ist instabil und zerfällt.
Zwei Spaltungen führen zu Ablagerungen
Bei Alzheimer-Patienten wird das Protein zweimal gespalten und zerfällt dadurch in drei Teile. Die mittleren Teilstücke mehrerer dieser Spaltungen verklumpen miteinander und bilden die für Alzheimer typischen Plaques außerhalb der Nervenzellen.
Der abgespaltene Teil im Inneren der Zelle ist stabil. Seine Interaktion mit einem anderen Protein führt über Zwischenschritte letztlich dazu, dass dieser Rest in den Zellkern wandert. Dort sammeln sich mit der Zeit solche Reste an und bilden Komplexe. „In Zellkulturexperimenten führt das dazu, dass die Zelle abstirbt“, so Müller.
Mit der Schlussfolgerung, dass das tatsächlich der Weg ist, auf dem Alzheimer entsteht, ist er aber sehr vorsichtig. Denn zwischen Zellkultur und lebendem Gehirn besteht ein großer Unterschied.
Organoide funktionieren wie kleine Gehirne
Diese Kluft kleiner zu machen ist Ziel einer neuen Methode. Sogenannte Organoide aus Stammzellen, die man aus einem erwachsenden Organismus gewinnen kann, funktionieren wie ein Mini-Gehirn.
Mit verschiedenen Tricks können die Forscher die Mini-Gehirne auch künstlich altern lassen. Das gelingt zum Beispiel durch oxidativen Stress, der sich durch die Zugabe von Wasserstoffperoxid hervorrufen lässt, oder durch UV-Bestrahlung, die zu vermehrten Schäden im Erbgut führt.
Markierungen in die Geninformation einbauen
Der besondere Kniff der Bochumer Gruppe liegt darin, dass sie die Stammzellen, aus denen die Mini-Gehirne entstehen, genetisch verändern. „Wir nutzen dafür die Crispr/Cas-Methode, die sogenannte Genschere“, erläutert Thorsten Müller. „Wir schalten aber nicht einfach einzelne Gene aus, wie das viele andere machen, sondern wir fügen gezielt Bestandteile ein.“
Dabei handelt es sich um Marker wie zum Beispiel das grün fluoreszierende Protein, kurz GFP, oder andersfarbige Markierungssequenzen. Indem die Forscher diese verschiedenfarbigen Marker beispielsweise genau an den Anfang und das Ende der Gensequenz einfügen, die den Bauplan für das APP enthält, können sie später genau verfolgen, wohin sich das Protein oder seine gespaltenen Teile bewegen.
Prüfung am lebenden System
Das erlaubt es erstmals, die in Zellkultur gewonnenen Ergebnisse am lebenden System zu überprüfen. „Mit den gehirnähnlichen Geweben, die im Labor gezüchtet werden, haben wir nun die Chance, für die Alzheimerforschung, die aktuell wieder ganz am Anfang steht, neue Erkenntnisse zu gewinnen“, erklärt Thorsten Müller. Nicht zuletzt kann ein solches System viele Tierversuche unnötig machen, auf die Forscher mangels Alternativen zurückgreifen mussten.
Ausführlicher Beitrag in Rubin
Einen ausführlichen Beitrag zum Thema finden Sie im Wissenschaftsmagazin Rubin unter https://news.rub.de/wissenschaft/2019-04-30-biochemie-alzheimer-im-mini-gehirn.
Texte auf der Webseite und Bilder aus dem Downloadbereich dürfen unter Angabe des Copyrights für redaktionelle Zwecke honorarfrei verwendet werden.
Redaktion: Meike Drießen
Dr. Thorsten Müller
Arbeitsgruppe Cell Signalling
Lehrstuhl Molekulare Biochemie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: 0234 32 24404
E-Mail: thorsten.t.mueller@rub.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…