3D-gedrucktes Salzgerüst für bioresorbierbare Knochenimplantate

Wie macht man aus Salz und Magnesium (links) ein Knochenimplantat mit regelmässig strukturierten Poren (r.)? ETH-Forschende entwickelten dazu ein Verfahren über ein Template aus 3D-gedrucktem Salz (Mitte). Bild: Laboratorium für Metallphysik und Technologie / Komplexe Materialien / ETH Zürich

Bei komplizierten Knochenbrüchen oder gar fehlenden Knochenteilen setzen Chirurgen in der Regel Metallimplantate ein. Als Materialien der Wahl bieten sich nebst Titan, das mit dem Gewebe weder chemisch noch biologisch wechselwirkt, auch Magnesium und seine Legierungen an.

Implantate aus diesem Leichtmetall haben den Vorteil, dass der Körper sie abbauen und das Magnesium als Mineralstoff aufnehmen kann. So ist keine weitere OP notwendig, um das Implantat zu entfernen.

Für eine schnelle Heilung sollte es oder dessen Oberflächen so beschaffen sein, dass sich knochenbildende Zellen gut darauf ansiedeln oder gar in das Implantat einwachsen können.

Materialforscherinnen und -forscher der ETH Zürich haben deshalb ein neues Verfahren entwickelt, um Magnesiumimplantate herzustellen, die über zahlreiche regelmässig angeordnete Poren verfügen und trotzdem stabil sind.

Ihre Entwicklung wird demnächst in der Fachzeitschrift Advanced Materials publiziert.

Magnesium mit strukturierter Porosität

Um eine poröse Grundstruktur zu erhalten, druckten die Forschenden zuerst mit einem 3D-Drucker ein dreidimensionales Gittergerüst aus Salz. Weil reines, herkömmliches Kochsalz nicht die notwendigen Eigenschaften zum Drucken hat, entwickelten die Forschenden zu diesem Zweck eine gelartige Salzpaste.

Der Durchmesser der Gitterstreben und deren Abstände lassen sich beim Drucken nach Bedarf einstellen. Um die Salzstruktur zu festigen, wurde sie anschliessend gesintert. Beim Sintern werden feinkörnige Stoffe stark erhitzt. Die Temperaturen liegen jedoch unterhalb des Schmelzpunkts des Stoffes, damit die Struktur des Werkstücks erhalten bleibt.

In einem nächsten Schritt infiltrierten die Materialforschenden den Porenraum zwischen den Salzstreben mit Magnesiumschmelze. «Dieser Rohling ist mechanisch sehr stabil und lässt sich durch Polieren, Drehen und Fräsen gut bearbeiten», sagt Jörg Löffler, Professor für Metallphysik und Technologie am Departement Materialwissenschaft. Nach der mechanischen Bearbeitung lösten die Forschenden das Kochsalz heraus und erhielten so das reine Magnesiumimplantat mit zahlreichen, regelmässig angeordneten Poren.

Entscheidend für klinischen Erfolg

«Die Möglichkeit, die Porengrösse und deren Verteilung und Richtung im Material zu kontrollieren, ist entscheidend für den klinischen Erfolg des Implantats, da knochenbildende Zellen gerne in solche Poren hineinwachsen», betont der ETH-Professor. Und genau darauf komme es an, damit ein Implantat rasch mit dem Knochen verwachse.

Das neu entwickelte Verfahren zur Herstellung derartiger Hilfsstrukturen aus Salz lässt nebst der Infiltration mit Magnesium viel Spielraum für weitere Materialien. Die Ko-Autoren Martina Cihova und Kunal Masania gehen davon aus, dass auf diese Art und Weise ebenso Polymere, Keramiken oder weitere Leichtmetalle mit einer kontrollierten Porengeometrie versehen werden können.

Die Idee für das neue Herstellungsverfahren entstand im Rahmen der Masterarbeit von Erstautorin Nicole Kleger. Gefördert wurde ihre Arbeit mit einem Excellence Scholarship & Opportunity Stipendium von der ETH Zürich. Im Rahmen ihrer Dissertation ist die Forscherin nun daran, das 3D-Druckverfahren weiterzuentwickeln.

Prof. Jörg Löffler, joerg.loeffler@mat.ethz.ch, +41 44 632 25 65

Kleger N, Cihova M, Masania K, Studart AR, Löffler JF. 3D Printing of Salt as a Template for Magnesium with Structured Porosity. Adv. Mater. 2019, 1903783, doi: 10.1002/adma.201903783

Media Contact

Peter Rüegg Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Potenzial alter Elektroautos nutzen

Bundesministerium für Bildung und Forschung fördert neues Graduiertenkolleg Circular E-Cars. Recycling als Chance für das Rheinische Revier. Weil in Elektroautos (E-Cars) im Vergleich zu herkömmlichen Automobilen deutlich mehr wertvolle Nichteisenmetalle…

Forscher erzeugen eindimensionales Gas aus Licht

Physiker der Universität Bonn und der Rheinland-Pfälzisch Technischen Universität Kaiserslautern-Landau (RPTU) haben ein eindimensionales Gas aus Licht erzeugt. Damit konnten sie erstmals theoretische Vorhersagen überprüfen, die für den Übergang in…

Zwergplanet Ceres: Ursprung im Asteroidengürtel?

Hellgelbe Ablagerungen im Consus Krater zeugen von Ceres‘ kryovulkanischer Vergangenheit – und beleben die Diskussion um ihren Entstehungsort neu. Der Zwergplanet Ceres könnte seinen Ursprung im Asteroidengürtel haben – und…

Partner & Förderer