Neue Strukturdaten zu Talin erklären Selbsthemmungs-Mechanismus
Ein komplexer Organismus ist aus Zellen aufgebaut, welche untereinander oder mit Strukturen in Zwischenzellräumen in Kontakt stehen. Damit Zellen mit der Umgebung physischen Kontakt aufnehmen können, besitzen sie an ihrer Zelloberfläche punktuelle Kontaktstellen.
Hierbei handelt es sich aber nicht um statische, sondern um dynamische Verbindungen. Besonders bei Zellwanderungen während der Zellentwicklung, bei Immunreaktionen und der Blutgerinnung muss ein fein regulierter Anheftungs- und Ablösungsprozess gewährleistet sein. Deshalb bestehen die Kontaktstellen aus einer ganzen Maschinerie von Proteinen.
In der Zellanhaftungsmaschinerie sind Talin und Integrin zwei zentrale Proteine, an denen in den letzten Jahren schon viel geforscht wurde. Gemeinsam mit ihrem Team hat Naoko Mizuno, Leiterin der Forschungsgruppe „Zellulärer Membrantransport“ am Max-Planck-Institut für Biochemie jetzt die Struktur und den Regulationsmechanismus des Proteins Talin mithilfe der Kryo-Elektronenmikroskopie gelöst.
„Obwohl Talin als Schlüsselprotein der Zellmigration bekannt ist, gab es noch viele offene Fragen zur Regulation, da die Architektur des gesamten Moleküls unbekannt war“, so Mizuno.
Dirk Dedden, Erstautor der Studie erzählt: „Wir haben uns auf die Analyse des gesamten Proteins konzentriert. Mithilfe verschiedener moderner biophysikalischer Methoden haben wir herausgefunden, welche Umgebungsbedingungen dazu führen, dass sich der Zustand des Proteins reversibel ändert.“
Dank kontrollierbarer Laborbedingungen konnten die Forscher jetzt die exakte molekulare Struktur per Kryo-Elektronenmikroskopie bestimmten.
Talin, wie eine mechanische Feder, ist in seiner inaktiven Form kugelförmig und in seinem aktiven Zustand länglich. Jetzt konnten die Forscher zeigen, welche Bereiche des Talins in ihrem kugelförmigen, selbsthemmenden Zustand für die Umgebung nicht zugänglich sind.
Das bedeutet, dass Nachbarproteine nicht mit dem Molekül interagieren können und die Zelle selbst nicht an umliegendes Gewebe anhaften kann. In seiner lägnlichen, aktiven Form dient das Molekül als Bindungsplattform für viele Nachbarproteine was zudem die Anhaftung der Zelle an die Umgebungstsrukturen fördert.
Naoko Mizuno erklärt: „Unsere Ergebnisse haben hoffentlich langfristig auch einen medizinischen Nutzen, denn besonders bei Krebserkrankungen funktioniert der Zellanhaftungsprozess nicht mehr richtig. Talin ist als Aktivator von Integrin bekannt und Integrin ist ein bekanntes Zielprotein für die Wirkstoffe bestimmter Krebsmedikamente. Wir wünschen uns, dass das Verständnis der Regulation des Anhaftungsmechanismus hilft Krankheitsprozesse zu verstehen und neue Therapien zu entwickeln“.
Naoko Mizuno, PhD
Zellulärer Membrantransport
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-mail: mizuno@biochem.mpg.de
http://www.biochem.mpg.de/en/rg/mizuno
D. Dedden, S. Schumacher, C. F. Kelley, M. Zacharias, C. Biertümpfel, R. Fässler, N. Mizuno: The architecture of talin1 reveals an autoinhibition 1 mechanism. Cell, September 2019
https://www.cell.com/cell/pdf/S0092-8674(19)30953-5.pdf
Media Contact
Weitere Informationen:
http://www.biochem.mpg.de/Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…