Laser erzeugt topologischen Zustand in Graphen
In topologischen Materialien nehmen Elektronen eine verdrehte Welt wahr. Statt sich geradeaus zu bewegen, wenn eine Kraft auf sie wirkt, kann es passieren, dass die Elektronen seitwärts geschoben werden. Tatsächlich fließt in solchen Materialien Strom senkrecht zur angelegten Spannung.
Das grundlegende Modell, welches diesen Effekt beschreibt, wurde Ende der 1980er Jahre von Duncan Haldane entwickelt. Selbst sein Erfinder bezweifelte, dass es jemals in einem echten Material implementiert werden könnte.
Dennoch erlaubte es die aufwändige chemische Synthese neuer Materialien später, sehr ähnliche Effekte zu beobachten, was eine technologische Revolution auslöste – und weswegen Haldane zu guter Letzt 2016 den Nobelpreis für Physik erhielt.
Topologisch geschützter Transport wird in Materialien normalerweise durch das Anlegen starker Magnetfelder oder die Synthese von Verbindungen mit starker Spin-Bahn-Kopplung erzeugt. Wissenschaftler in Andrea Cavalleris Gruppe am MPSD haben nun gezeigt, dass auch die kohärente Wechselwirkung mit zirkular polarisiertem Licht topologische Ladungsströme in Graphen erzeugen kann.
Bei diesem grundlegend neuen Ansatz des Teams wird das Graphen mit intensiven, zirkular polarisierten Laserpulsen beleuchtet, deren elektrisches Feld die Elektronen in Kreisen bewegt. Während das Graphen von dem kurzen Laserpuls beleuchtet wird, verhält es sich plötzlich wie ein topologisches Material. Sobald der Laserpuls vorbei ist, kehrt es in seinen ursprünglichen Zustand zurück. Obwohl dieser Mechanismus in Simulationen getestet wurde, blieb bisher völlig unklar, ob er sich auch im komplizierteren Umfeld von realen Festkörpern anwenden ließe und dort messbar wäre.
Um ihre Entdeckung zu belegen, mussten die Physiker elektrische Ströme messen, die senkrecht zur angelegten Spannung fließen. Dies stellte jedoch eine große Herausforderung dar: „Da der Effekt nur für ungefähr ein Millionstel eines Millionstels einer Sekunde anhält, mussten wir einen gänzlich neuen elektronischen Schaltkreis entwerfen,“ sagt Erstautor James McIver.
Das Ergebnis war eine ultraschnelle, optoelektronische Gerätearchitektur, die auf lichtempfindlichen Schaltern basiert. Sie bestätigte die Existenz des Effekts. Die Forscher wollen diesen Schaltkreis auch zukünftig nutzen, um diverse Probleme in Quantenmaterialien zu untersuchen, wie zum Beispiel lichtinduzierte Supraleitung oder topologische Randkanäle.
„Diese Arbeit zeigt, dass Licht topologische Eigenschaften in topologisch trivialen Materialen hervorrufen kann,“ sagt Koautor Gregor Jotzu. „Das ultraschnelle Auftreten dieses Effekts birgt großes Potential für die Entwicklung von extrem schnellen Sensoren oder Rechnern.“
James McIver, Erstautor: james.mciver@mpsd.mpg.de
Jenny Witt, MPSD Kommunikation & PR: jenny.witt@mpsd.mpg.de, +49 (0)40 8998 88044
Media Contact
Alle Nachrichten aus der Kategorie: Materialwissenschaften
Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.
Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.
Neueste Beiträge
Ein endloser Kreislauf: Wie sich einige Bakterien mit den Jahreszeiten entwickeln
Die längste jemals gesammelte natürliche Metagenom-Zeitreihe mit Mikroben offenbart ein verblüffendes evolutionäres Muster, das sich wiederholt. Ein mikrobielles „Murmeltiertagsjahr“ im Lake Mendota Ähnlich wie Bill Murray im Film „Und täglich…
Entdecken Sie bahnbrechende Forschung zur Regeneration der Achillessehne
Achillessehnenverletzungen sind häufig, aber aufgrund der Einschränkungen aktueller Bildgebungstechniken schwer während der Genesung zu überwachen. Forschende unter der Leitung von Associate Professor Zeng Nan von der International Graduate School in…
Warum Prävention besser ist als Heilung – Ein neuartiger Ansatz für den Umgang mit Infektionskrankheiten
Forscher haben eine neue Methode entwickelt, um ansteckendere Varianten von Viren oder Bakterien zu identifizieren, die sich unter Menschen auszubreiten beginnen – darunter Erreger von Grippe, COVID, Keuchhusten und Tuberkulose….