Immunsystem: Infizierte Zellen funken SOS

Marburger Mediziner haben erforscht, wie das „Alarmsignal“ Adenosintriphosphat (ATP) das Immunsystem in Aktion treten lässt und ihre Ergebnisse in der US-Fachzeitschrift PNAS veröffentlicht. Die Arbeit bestätigt die Hypothese, dass bei der Aktivierung des Immunsystems neben der Antigenerkennung und den Infektionssignalen noch ein dritter Mechanismus eine wichtige Rolle spielt: die Freisetzung von Alarmsignalen – normalerweise innerhalb der Zellen lokalisierter Substanzen – durch infizierte oder mechanisch geschädigte Zellen.

Durch welche Mechanismen wird das Immunsystem aktiviert, wenn Zellen zugrunde gehen oder Krankheitserreger in den Körper eindringen? Diesem grundlegenden Problem der Immunologie gehen Wissenschaftler des Fachbereichs Medizin der Philipps-Universität Marburg in einer am 22. Juni 2004 in der US-amerikanischen Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) veröffentlichten Arbeit nach (Hanley et al., PNAS 101, 9479-9984). In einem gemeinsamen Forschungsprojekt untersuchten die Arbeitsgruppen um Prof. Jürgen Daut vom Institut für Normale und Pathologische Physiologie und Prof. Klaus Heeg vom Institut für Mikrobiologie die Rolle von „Alarmsignalen“ (danger signals) bei der Steuerung des Immunsystems.

Die Forschungsergebnisse legen den Schluss nahe, dass die Freisetzung von Adenosintriphosphat (ATP) aus geschädigten oder infizierten Zellen ein Alarmsignal darstellt, das über eine komplexe Signalkaskade zu einer Aktivierung des Immunsystems führt. Die Autoren kommen zu dem Ergebnis, dass die Qualität und das Ausmaß der Immunantwort auf körperfremde Substanzen (Antigene) durch die Kombination von so genannten Infektionssignalen (infectious non-self signals) und Alarmsignalen wie der Freisetzung von ATP gesteuert wird.

Gratwanderung: Die Antwort des Immunsystems auf potenzielle Krankheitserreger

Das Immunsystem des Körpers dient der Abwehr körperfremder Substanzen und Mikroorganismen sowie der kontinuierlichen Elimination anomaler (zum Beispiel maligner, also bösartig entarteter) körpereigener Zellen. Viele zelluläre Mechanismen, die an der Immunabwehr beteiligt sind, kennen die Forscher inzwischen, doch die wesentliche Frage wird immer noch diskutiert: Welche Prozesse lösen letztendlich die Immunantwort des Körpers aus?

Diese Prozesse sind komplex, denn die der jeweiligen Situation angemessene Antwort ist eine Gratwanderung: Um Infektionen bekämpfen zu können, muss das Immunsystem zunächst körpereigene Substanzen (self) und körperfremde Substanzen (non-self) unterscheiden. Es muss zuverlässig auf Krankheitserreger reagieren, darf jedoch auf keinen Fall durch körpereigene Proteine aktiviert werden, weil es dann zu Autoimmunkrankeiten wie zum Beispiel Myasthenie oder Multipler Sklerose kommen kann. Andererseits dürfen bestimmte körperfremde Substanzen nicht zu einer Aktivierung des Immunsystems führen: Zum Beispiel muss sich das Immunsystem gegenüber apathogenen (nicht krankheitserregenden) Keimen im Magen-Darm-Trakt oder Fremdproteinen des Embryos im Mutterleib „tolerant“ verhalten.

Die jetzt veröffentlichten Resultate der Marburger Wissenschaftler, die mit kultivierten Zellen (in vitro) – nicht im intakten Organismus (in vivo) – gewonnen wurden, deuten darauf hin, dass die Entscheidung des Immunsystems zwischen aktiver Immunantwort oder Toleranz wesentlich davon abhängt, ob ein Alarmsignal wie ATP im Raum außerhalb der Zellen vorhanden ist oder nicht. Sollten sich diese Ergebnisse in vivo bestätigen, wäre damit ein wichtiger Fortschritt bei einem der grundlegenden Probleme der Immunologie erzielt.

Die Fragestellung und ihre Geschichte

Neben dem angeborenen Immunsystem, zu dem unter anderem auch Makrophagen (Fresszellen) gehören, verfügen höher entwickelte Säugetiere wie der Mensch auch über ein adaptives, also „lernendes“ Immunsystem. Bei letzerem spielen die Lymphozyten durch Erkennung fremder Proteine (Antigene) und Produktion von Antikörpern eine wichtige Rolle, wie P.B. Medawar und M.F. Burnet in ihrem „Selbst-Nicht-Selbst“-Modell (self non-self) der erworbenen Immunität darstellten.

In den 1990er Jahren erweiterte der kürzlich verstorbene Charles Janeway das klassische Bild der Regulation des Immunsystems um die Erkenntnis, dass das adaptive Immunsystem durch das angeborene Immunsystem gesteuert wird („infectious non-self“-Modell). Er konnte zeigen, dass Zellen des angeborenen Immunsystems (zum Beispiel Makrophagen) durch zwei parallele Mechanismen zur Aktivierung des adaptiven Immunsystems beitragen. Erstens dadurch, dass sie Krankheitserreger in sich aufnehmen und deren körperfremde Proteinfragmente an ihrer Oberfläche „präsentieren“, sodass diese von den Lymphozyten erkannt werden können („Antigenpräsentation“). Zweitens dadurch, dass sie, ebenfalls an ihrer Oberfläche, körpereigene Signalmoleküle, so genannte costimulatorische Moleküle, präsentieren. Letzteres geschieht dann, wenn die Zellen typische molekulare Strukturelemente von Krankheitserregern erkennen („Infektionssignale“). Fehlen diese Infektionssignale, reagieren die Lymphozyten nur schwach oder gar nicht auf Fremdproteine.

Allerdings war Janeways Erkenntnis nur eine Verlagerung des Problems, denn es stellte sich nun die Frage, warum die Zellen des angeborenen Immunsystems in manchen Situationen durch Infektionssignale aktiviert werden und in anderen nicht. Außerdem blieb weiterhin unklar, wie das angeborene Immunsystem aktiviert wird, wenn es zu Immunreaktionen kommt, die nicht von Erregern ausgelöst werden.

Dem Problem auf die Spur gekommen

Diesem Problem scheinen die Marburger Mediziner nun auf die Spur gekommen zu sein. Ihre Arbeit bestätigt die Hypothese der amerikanischen Immunologin Polly Matzinger, dass bei der Aktivierung des Immunsystems neben der Antigenerkennung und den Infektionssignalen noch ein dritter Mechanismus eine wichtige Rolle spielt: die Freisetzung von Alarmsignalen. Matzinger vermutete, dass die Zellen des angeborenen Immunsystems bevorzugt dann auf körperfremde Substanzen reagieren, wenn körpereigene Zellen aufgrund einer Infektion durch pathogene Keime oder nach mechanischer Beschädigung Alarmsignale aussenden. Als hypothetische Alarmsignale sah sie Moleküle an, die sich normalerweise ausschließlich innerhalb der Zellen befinden und daher von den Immunzellen nicht wahrgenommen werden. Über die Natur dieser Signalstoffe war bisher jedoch wenig bekannt.

Die Mitarbeiter der Marburger Arbeitsgruppen um Prof. Jürgen Daut und Prof. Klaus Heeg – Dr. Peter J. Hanley, Boris Musset, Vijay Renigunta, Sven H. Limberg, PD Dr. Alexander Dalpke, Rainer Sus und Dr. Regina Preisig-Müller – zeigten nun, dass die Freisetzung von ATP zu einer Aktivierung des angeborenen Immunsystems führen kann. ATP ist in allen Zellen unseres Körpers vorhanden und als Überträger von Energie an fast allen wichtigen Stoffwechselwegen beteiligt. Außerhalb der Zellen kommt ATP normalerweise nicht oder nur in geringsten Konzentrationen vor, es wird jedoch von infizierten, mechanisch geschädigten oder an Sauerstoffmangel leidenden Zellen abgegeben.

Das freigesetzte ATP, so fanden Hanley et al. heraus, löst in Makrophagen „Calciumoszillationen“ aus: Es bindet an bestimmte Rezeptoren an der Membran der Makrophagen, was dazu führt, dass in diesen Zellen rhythmische Schwankungen der Calciumkonzentration mit einer Frequenz von etwa zwölf Calciumpulsen pro Minute auftreten. Diese Oszillationen führen zu einer vermehrten Synthese des entzündungsfördernden Zytokins Interleukin-6 durch die Makrophagen und schließlich, über mehrere Zwischenschritte, zu einer Aktivierung der Lymphozyten und damit des adaptiven Immunsystems.

Weitere Informationen:

Prof. Dr. Jürgen Daut: Institut für Normale und Pathologische Physiologie, Philipps-Universität Marburg, Deutschhausstr. 2, 35037 Marburg, Tel. (06421) 28 66494, E-Mail: jdaut@staff.uni-marburg.de

Proceedings of the National Academy of Sciences (PNAS): Hanley et al., PNAS 101, 9479-9984: „Extracellular ATP induces oscillations of intracellular Ca2+ and membrane potential and promotes transcription of IL-6 in macrophages“

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…